Use este identificador para citar ou linkar para este item:
https://repository.ufrpe.br/handle/123456789/841
Título: | Um estudo comparativo de técnicas para a classificação contextual de companhia para sistemas de recomendação sensíveis a contexto |
Autor: | Silva, Douglas Henrique Santana da |
Endereco Lattes do autor: | http://lattes.cnpq.br/6428879549861854 |
Orientador: | Silva, Douglas Véras e |
Endereco Lattes do orientador : | http://lattes.cnpq.br/2969243668455081 |
Palavras-chave: | Computação ubíqua;Software de sistemas;Software;Sistemas de recomendação (filtragem de informações) |
Data do documento: | 22-Jan-2019 |
Citação: | SILVA, Douglas Henrique Santana da. Um estudo comparativo de técnicas para a classificação contextual de companhia para sistemas de recomendação sensíveis a contexto. 2019. 57 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2019. |
Abstract: | Nowadays, the vast amount of information has harmed users during decision making. In face of this problem, recommendation systems have been proposed in order to offer suggestions that help users to overcome such problem. These suggestions are even more valuable when these systems begin to suggest items based on the user contexts. Among these contexts, the companion context can be highlighted. Through the inference of the companion context the system may suggest different items if the user is accompanied or not. An example of a system that has such features is the CD-CARS. However, the unsupervised learning method for companion inference on CD-CARS has some limitations. In this way, the present research analyzed and highlighted a supervised learning method that can replace the current company contextual classification approach executed in the CD-CARS. |
Resumo: | Atualmente, a grande quantidade de informação tem prejudicado os usuários durante a tomada de decisões. Em face deste problema, sistemas de recomendação tem sido propostos de modo a conferir sugestões que auxiliem aos usuários em face de tal problema. Essas sugestões são ainda mais valiosas quando esses sistemas passam a sugerir itens se baseando também nos contextos ao qual o usuário está inserido. Dentre os esses contextos o de companhia pode ser destacado. Por meio da inferência do contexto de companhia o sistema poderá sugerir diferentes itens caso o usuário esteja acompanhado ou não. Um bom exemplo de sistema que possui tais características é o Sistemas de Recomendação em Domínios Cruzados e Sensíveis a Contexto (CD-CARS). Entretanto, o método de aprendizagem não supervisionada para inferência contextual de companhia no CD-CARS possui limitações. Desta forma, a presente pesquisa analisou e destacou um método de aprendizagem supervisionada que substitui a atual abordagem de classificação contextual de companhia executada no CD-CARS. |
URI: | https://repository.ufrpe.br/handle/123456789/841 |
Aparece nas coleções: | TCC - Bacharelado em Ciência da Computação (Sede) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
tcc_douglashenriquesantanadasilva.pdf | 1,62 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.