Use este identificador para citar ou linkar para este item: https://repository.ufrpe.br/handle/123456789/5769
Título: Utilização de filtragem colaborativa no auxílio de recomendação personalizada para leitores de mangá
Autor: Brochardt, Rodrigo Nativo do Brasil
Orientador: Garrozi, Cícero
Endereco Lattes do orientador : http://lattes.cnpq.br/0488054917286587
Palavras-chave: Sistemas de recomendação (filtragem de informações);Decomposição de valor singular;Algoritmos computacionais;Mangá
Data do documento: 4-Mar-2024
Citação: BROCHARDT, Rodrigo Nativo do Brasil. Utilização de filtragem colaborativa no auxílio de recomendação personalizada para leitores de mangá. 2024. 60 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2024.
Abstract: This study investigated, developed, and compared two approaches for generating manga recommendations: the Singular Value Decomposition (SVD) model and the Pearson Correlation Coefficient. The methodology involved data preparation through the development and execution of a web scraper to extract manga information and reviews from a highly active internet forum. Challenges arising in the applicability of these data extraction methods were addressed, along with alternatives for handling source blocking situations, model training, and performance evaluation, focusing on collaborative filtering and personalized recommendations for user profiles and manga works. In the implementation of SVD, latent patterns in user review data were identified, enabling personalized recommendations based on individual preferences through the sharing of experiences with similar profiles. However, metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) revealed the need for model refinement to improve its accuracy, as well as alternative implementations for conducting comparisons and metrics related to the specific data mass used in the study. Conversely, the approach based on the Pearson Correlation Coefficient prioritized similarity between manga reviews to generate item-focused recommendations, although it significantly relied on the number of available reviews. This methodology offered a direct and valid logic for personalized recommendations based on relationships derived from reviews. The conclusion highlighted the future possibility of exploring hybrid methods combining the advantages of SVD and the Pearson Correlation Coefficient to achieve more precise and comprehensive recommendations, as well as validating techniques that bring different recommendation approaches for tangible comparison. The utilization of additional data gathered in the generated data mass to enrich the quality of recommendations was suggested, aiming to use more detailed parameters in recommendations, along with the employment of indirect approaches, such as using LLMs to aid in the recommendation process. Finally, the study emphasizes the importance of advancing these recommendation technologies to facilitate readers' lives by assisting in filtering the vast content offered by the industry and the internet.
Resumo: Este trabalho investigou, elaborou e comparou duas abordagens para a geração de recomendações de mangás: o modelo de Decomposição em Valores Singulares (SVD) e o Coeficiente de Correlação de Pearson. A metodologia envolveu a preparação dos dados a partir do desenvolvimento e execução de um rastreador web para extrair informações de obras de mangá e avaliações de um fórum bastante movimentado na internet. As dificuldades que surgem para a aplicabilidade destes métodos de extração de dados, bem como alternativas para lidar com situações de bloqueio da fonte, treinamento dos modelos de recomendação e avaliação de desempenho, foram abordadas, com foco na filtragem colaborativa e recomendações personalizadas para perfis de usuários e para obras de mangá. Na implementação do SVD, foi possível identificar padrões latentes nos dados de avaliação dos usuários, permitindo recomendações personalizadas com base nas preferências individuais a partir do compartilhamento de experiências com perfis similares. No entanto, métricas como o Mean Absolute Error (MAE) e Root Mean Squared Error (RMSE) revelaram a necessidade de refinamento do modelo para melhorar sua precisão, assim como alternativas de implementações para realização de comparações e métricas relacionadas à massa de dados específica utilizada no trabalho. Por sua vez, a abordagem baseada no Coeficiente de Correlação de Pearson priorizou a similaridade entre as avaliações de mangás para gerar recomendações focadas em itens. Embora dependesse significativamente do número de avaliações disponíveis, essa metodologia ofereceu uma lógica direta e válida para recomendações personalizadas a partir dos relacionamentos advindos das avaliações. A conclusão destacou a possibilidade futura de explorar métodos híbridos que combinem as vantagens do SVD e do Coeficiente de Correlação de Pearson, visando alcançar recomendações mais precisas e abrangentes, bem como a possibilidade de validar técnicas que ofereçam abordagens diferentes de recomendação para obter um comparativo palpável. A utilização de dados adicionais reunidos na massa de dados gerada para enriquecer a qualidade das recomendações, a fim de utilizar parâmetros mais detalhados em sua recomendação, assim como a utilização de abordagens indiretas, como por exemplo, a utilização de LLMs para auxiliar no processo de recomendação. Por fim, o trabalho concluiu a importância dos avanços destas tecnologias de recomendação para facilitar a vida do leitor, auxiliando na filtragem de grandes conteúdos oferecidos pela indústria e internet.
URI: https://repository.ufrpe.br/handle/123456789/5769
Aparece nas coleções:TCC - Bacharelado em Sistemas da Informação (Sede)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
tcc_rodrigonativodobrasilbrochardt.pdf3,36 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons