Use este identificador para citar ou linkar para este item:
https://repository.ufrpe.br/handle/123456789/6498
Título: | Um estudo de caso para previsão de partidas de futebol utilizando o ChatGPT |
Autor: | Silva, Thiago Luiz Barbosa da |
Orientador: | Nascimento, Leandro Marques do |
Endereco Lattes do orientador : | http://lattes.cnpq.br/9163931285515006 |
Palavras-chave: | Inteligência artificial;ChatGPT;Futebol;Previsão;Apostas (Esportes) |
Data do documento: | 1-Out-2024 |
Citação: | SILVA, Thiago Luiz Barbosa da. Um estudo de caso para previsão de partidas de futebol utilizando o ChatGPT. 2024. 52 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2024. |
Abstract: | The present study aims to develop and test a tool for predicting football match outcomes using the ChatGPT language model. The research explores the potential of this technology to process match data and generate predictions, comparing its performance with the probabilities offered by betting houses. The method includes data collection through web scraping from sources such as Placar de Futebol and FBref, which allowed the creation of a rich database with detailed information about teams, championships and statistics. From this database, the tool was developed within the Arena Sport Club project, which includes features for visualizing results and football-related information. Different prompt-generation strategies were implemented in the tool to determine the best way to instruct the model to provide accurate predictions. The results showed that the model has the potential to make effective football match predictions, approaching the accuracy rates of betting houses. However, the study identified challenges such as high financial costs and the need for continuous adjustments to address the complexity of the matches and the variables involved. The conclusion suggests that while ChatGPT offers a promising tool for sports predictions, its use in real-world contexts needs to be optimized. Future research can enhance the application of this technology, reducing costs and improving accuracy over time. |
Resumo: | O presente trabalho tem como objetivo desenvolver e testar uma ferramenta de previsão de resultados de partidas de futebol, utilizando o modelo de linguagem ChatGPT. A pesquisa explora o potencial dessa tecnologia para processar dados de partidas e gerar previsões, comparando seu desempenho com as probabilidades oferecidas por casas de apostas. O método utilizado inclui a coleta de dados por meio de web scraping em fontes como Placar de Futebol e FBref, o que possibilitou a criação de uma base de dados rica em informações sobre equipes, campeonatos e estatísticas detalhadas. A partir dessa base, a ferramenta foi criada dentro do projeto Arena Sport Club, que possui funcionalidades sobre visualização de resultados e informações sobre futebol. Diferentes estratégias de geração de prompts foram implementadas na ferramenta para verificar a melhor maneira de instruir o modelo a fornecer previsões precisas. Os resultados mostraram que o modelo tem potencial para realizar previsões de resultados de futebol de maneira eficaz, aproximando-se das taxas de acerto das casas de apostas. Entretanto, o trabalho identificou desafios, como o alto custo financeiro e a necessidade de ajustes contínuos para lidar com a complexidade das partidas e as variáveis envolvidas. A conclusão sugere que, embora o ChatGPT ofereça uma ferramenta promissora para previsões esportivas, é necessário otimizar seu uso em contextos reais. Futuras pesquisas podem aprimorar a aplicação dessa tecnologia, reduzindo custos e melhorando a precisão em longo prazo. |
URI: | https://repository.ufrpe.br/handle/123456789/6498 |
Aparece nas coleções: | TCC - Bacharelado em Ciência da Computação (Sede) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
tcc_thiagoluizbarbosadasilva.pdf | 2,27 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons