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Resumo
À medida que a tecnologia avança, os modelos e sistemas tornam-se cada vez mais

complexos, assim como o esforço para verificá-los. À medida que um projeto avança, o

custo de correção de erros aumenta exponencialmente. Assim, técnicas que auxiliem

na identificação antecipada de tais erros são cada vez mais importantes. Dentre essas

técnicas, a verificação de modelos tem se apresentado como uma abordagem interes-

sante. No entanto, ela requer a manipulação de notações formais que são difíceis de

operar por projetistas de sistemas. Portanto, a criação de ferramentas que abstraem

os aspectos formais dessas abordagens de verificação tem se mostrado um caminho

promissor. Outro aspecto relevante é que alguns problemas podem surgir devido à

natureza concorrente desses sistemas. Problemas como deadlock e não determinismo

estão bastante presentes nessa perspectiva. No entanto, a maioria das ferramentas atu-

ais não tem a capacidade de lidar com esses problemas. Além disso, as que conseguem

geralmente são ferramentas que exigem licenças pagas. Neste trabalho, expandimos

a ferramenta criada em trabalhos anteriores para que ela possa ser utilizada em am-

bientes de modelagem abertos, sem deixar de ser de código aberto e não comercial.

Nossa ferramenta agora tem a capacidade de verificar propriedades como deadlock e

não determinismo de diagramas de atividades que são criados usando a linguagem

SysML em um ambiente de modelagem aberto chamado OpenMBEE. Embora alguns

outros trabalhos realizem a verificação de deadlock, poucos são aqueles que realizam a

verificação de não-determinismo, menos ainda são aqueles que podem realizar ambos.

Nossa ferramenta possui uma mecanização formal subjacente que nos permite realizar

verificações automatizadas. Além disso, a ferramenta também traz a vantagem de

que seus usuários não precisam entender ou manipular essa linguagem formal, pois

fornecemos um módulo de rastreabilidade que rastreia os resultados da verificação

formal de volta à notação do ambiente de modelagem, que é baseada no formato

JSON. As principais contribuições deste trabalho são o aumento da expressividade da

ferramenta e a adição de suporte para a verificação de diagramas de atividades de um

ambiente de modelagem aberto. Avaliamos nossa abordagem usando um modelo real

da indústria relacionado ao desenvolvimento de um Telescópio de Trinta Metros (TMT),

que é fornecido pela comunidade OpenMBEE.

Palavras-chave: SysML, CSP, diagrama de atividade, verificacação, ambiente de

modelagem aberto.



Abstract
As technology advances, models and systems become increasingly complex, as does

the effort to verify them. As a project progresses, the cost of correcting errors increases

exponentially. Thus, techniques that help identify such errors in advance are increasingly

important. Among these techniques, model checking has been presented as a interesting

approach. Nevertheless, it requires manipulation of formal notations that are difficult to

operate by system designers. Therefore, the creation of tools that abstract the formal

aspects of these verification approaches has been shown as a promising way forward.

Another relevant aspect is that some problems may arise due to the concurrent nature

of these systems. Problems such as deadlock and non-determinism are quite present in

this perspective. However, most of the current tools lack the capability to handle such

problems. In addition, those that succeed are often tools that require paid licenses. In

this work, we expand the tool created in previous works so that it can be used in open

modeling environments, while still being open source and non-commercial. Our tool

now has the ability to verify properties such as deadlock and non-determinism of activity

diagrams that are created using the SysML language in an open modeling environment

called OpenMBEE. Although some other works perform deadlock verification, few are

those that perform non-determinism verification, even fewer are those that can perform

both. Our tool has an underlying formal mechanization that allow us to perform automated

checks. Furthermore, the tool also brings the advantage to its users that they do not need

to understand or manipulate such a formal language, because we provide a traceability

module that track the results of the formal verification back to the modeling environment

notation, which is based on the JSON format. The main contributions of this work are the

increase in the expressiveness of the tool and the addition of support for the verification

of activity diagrams of an open modeling environment. We evaluate our approach using

a real industry model related to the development of a Thirty-Meter Telescope (TMT),

which is provided by the OpenMBEE community.

Keywords: SysML, CSP, activity diagram, verification, open modeling environment.
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1 Introduction

As a project progresses, its models become increasingly detailed and complex,

thus making it difficult to identify errors. This difficulty can cause this identification step

to be postponed to later stages. However, the more advanced the project phase, the

more expensive it becomes to solve a problem. In this context, (HASKINS et al., 2004)

does a study on the cost escalation to fix errors over the course of a project. As can be

seen in Figure 1, if the base cost in the requirements phase is 1x, in the design phase it

could cost up to 8x more, 16x more in manufacturing phase, 78x in Integration and test

phase and can reach up to absurd 1500x in Operation phase. Thus, techniques that

can identify errors in advance become even more important. Among these techniques,

model verification has been presented as an interesting approach, due to the fact that it

is able to identify these errors even in the design phase.

Figure 1 – Cost to fix a problem in each phase based on (HASKINS et al., 2004).

The semantics of these models can be formal or informal. The formal models are

unambiguous and have several tools that allow you to perform automatic verification

on them, but to take advantage of these features it is necessary to use the adequate

mathematical concepts. The usage of formal models require a greater amount of related

technical knowledge both to understand and to manipulate them. Meanwhile, informal

models such as Unified Modeling Language (UML) (OMG, 2017) are easier and more

intuitive to understand as they do not require those mathematical concepts. However,

due to the lack of such concepts, the models can become ambiguous and, thus, present

the need for a designer to judge whether or not such models have any kind of flaws.

The designer relies mostly on his intuition and experience, which can lead to errors due
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to the human factor.

Among the models that present concurrency, we can mention twomajor problems,

deadlock and non-determinism. The deadlock problem occurs when a part of the system,

or even the entire system, is waiting for a certain resource or signal that will never arrive,

thus causing a system crash. A classic problem when we talk about deadlock is the

dinning philosophers problem, in which five philosophers numbered from 0 to 4 sit at a

round table to eat their dinner. Each philosopher has his own place at the table and in

front of him his plate of food. The problem is that each plate has a spaghetti that needs

two forks to be eaten and each plate has a fork on its left and one on its right. If each

philosopher picks up the fork to the right of his plate, all the forks will be busy but no

one will be eating.

On the other hand, the problem of non-determinism is a little more subtle, it

happens when you run the same system, with the same inputs n times and in the n+1

attempt it presents a completely different and/or unexpected result, causing a loss of

control of the system features. In critical systems projects where a single mistake can

lead to disastrous situations such as major financial losses or even loss of human life, the

verification process is critical and, in general, becomes quite expensive for companies

due to the lack of available tools that allow this verification.

In this work we seek an approach that combines the best of both worlds. The

UML language is well known as a standard for creating systems design models, whether

hardware or software. It can be used for visualization, specification, construction, doc-

umentation of artifacts and is mainly intended for complex systems such as banking

and financial services, telecommunications, transport and distributed services. From

the UML language, other languages were developed, such as the System Modeling

Language (SysML). This language can be considered as an extension of UML, however,

while UML is more software oriented, SysML is intended to systems engineering. As a

less software-focused language, SysML diagrams can be more expressive and flexible.

Currently, the UML language has fourteen types of diagrams that can be separated into

two large groups: structural diagrams and behavioral diagrams, each of these contains

seven types of diagrams. SysML covers 7 of these diagrams along with the addition

of 2 more, requirement and parametric diagrams. Here, we use one type of diagram

that is covered from both, the activity diagram. According to (REGGIO et al., 2013), the

activity diagram is one of the most used diagrams in the industry, it is usually used to

represent functionalities and flows of systems, including concurrent systems.

As time goes on, projects are becoming broader and more complex, however,

such scope hampers the level of validations that we can perform in SysML models

due to their informal semantics, which are textually described in natural language.

The Communicating Sequential Processes(CSP) language (HOARE, 1985) provides
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a process algebra for specifications of concurrent systems. This language has been

practically applied in industry as a tool for specifying and verifying the concurrent aspects

of a variety of different systems, such as the T9000 Transputer, as well as a secure

e-commerce system. It has formal (unambiguous) semantics and refinement calculation

mechanisms, which are automated through the FDR4 tool (GIBSON-ROBINSON et

al., 2014). In addition to these refinements, the FDR4 also provides mechanisms for

checking properties such as deadlock and non-determinism. A CSP specifications can

be defined in text files and with the use of its process algebra, therefore, it becomes

more complex due to more rigorous mathematical notations and consequently making it

more difficult and less intuitive than diagrammatic level specifications.

By describing the semantics of the SysML language using a language like CSP

we are defining a formal semantics for SysML. In this way, in addition to being able to

define unambiguous models, we can use the tooling support of a formal language to

perform automated logical reasoning in the models.

Several previous works aim to automatically verify properties of activity diagrams,

helping designers to build more reliable systems. For instance, the following works:

(LIMA; DIDIER; CORNéLIO, 2013; LIMA, 2016; LIMA; TAVARES; NOGUEIRA, 2020)

were used, to define formal semantics for UML diagrams in terms of the CSP language.

Such works served as a basis for the creation of a strategy for translating activity

diagrams to CSP specifications. Using the FDR tool it is possible to verify properties of

such specifications. Most famous modeling environments like Simulink (MATHWORKS,

2022) and SCADE (ANSYS, 2022) are commercial tools that require a paid license, which

makes it difficult for some designers to access verification features. In addition, they are

tool-dependent modeling environments. Then, in (LIMA; TAVARES; NOGUEIRA, 2020)

a plug-in to the Astah UML modeling environment (VISION, 2019) has been proposed

to check deadlock freedom and non-determinism on activity diagrams. This plug-in

automatically translates an activity diagram to a CSP specification and uses FDR in

background to verify these properties. Traceability is also provided at the diagrammatic

level. Thus, at no time during the process do system designers need to have any

knowledge of the formal semantics.

The approach proved to be efficient in terms of verification, however, it was

also tool dependent. So, in (DOMINGUES, 2021) the architecture of the framework

was refactored to allow the creation of an API and thus allow the inclusion of new

modeling tools, consequently mitigating the framework’s tool dependency. In this follow-

up work we decided that the Astah framework support would still be maintained and

new tools could be supported. Nevertheless, supporting tools creates a dependency

between the approach and how these tools represent the UML/SysMLmodels. Therefore,

instead of supporting tools, the ideal scenario would be to support an open modeling
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environment that could be the baseline for several tools. That is the idea behind the

OpenMBEE (OPENMBEE, 2021). Which is a community supported by companies and

institutes aiming to provide an open source modeling environment for model-based

system engineering. That has already made available some tools that help in the creation

of such an environment, like:

• Model Management System (MMS) which is a central repository that provides

services for managing models and is a version control system for real industry

projects that can be consulted through REST requests.

• Model Development Kits (MDKs), these kits are tool-specific integrations that it’s

primary purposes are to sync models with the MMS, and implement the DocGen

language, which allows modelers to dynamically generate documents in a model-

based approach using the view and viewpoint concept.

• View Editor (VE) that enables users to interact with SysML models within a web-

based environment. It implements the MMS REST API to provide a web envi-

ronment to create, read, and update model elements, including Documents and

Views.

By creating an adapter to the MMS for the framework API it was possible to transform

the framework into an open source environment.

1.1 Objectives
For this work we aim to continue the work started in (DOMINGUES, 2021), in

addition to increasing the expressiveness of the framework through the addition of new

CSP semantics for composite datatypes, modifications to the parser so that it is possible

to support such new semantics, along with with the creation of an adapter package that

allows the communication of our API with that of the MMS and, finally, create a module

to generate a counterexample to allow designers to remain at the diagrammatic level.

General objective:

Expand the open source environment that performs the verification of properties of

UML/SysML activity diagrams automatically using formal reasoning technologies to

allow traceability of results to the diagrammatic level.

Specific objectives:
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1. Define semantics in CSP for structured types not currently supported by the

approach, more specifically, enumerations and datatypes of SysML.

2. Implement the semantics for new structured types previously defined in order to

increase the expressiveness of the framework.

3. Study possible mechanisms for generating counterexamples in order to allow

the traceability of property verification in activity diagrams of the OpenMBEE

environment.

4. Develop a counterexample generation module to allow traceability of property

checks in activity diagrams of the environment provided by the OpenMBEE group

(MMS).

5. Evaluate the activity diagram checker built through a real industry case study

related to the OpenMBEE project.

1.2 Methodology
To achieve these specific objectives, we follow this methodology:

1. Study the technologies: In this step, we study the technical aspects related to our

work: the OpenMBEE architecture and related technologies, the current state of

the framework developed in previous works, and, finally, the CSP related tools.

2. Develop communication module: This steps involves the development of the

module responsible for communication with the OpenMBEE REST API.

3. Develop translation of composite types: This step provides, the necessary transla-

tion for the new semantics of complex data types.

4. Develop traceability module: This step focuses on the construction of the module

responsible for receiving the counterexample trace from FDR4 and generating the

counterexample diagram in the notation of OpenMBEE.

5. Evaluate results: In this step, we evaluate our proposal by performing a real case

study from the industry, which is available in the OpenMBEE repository.

1.3 Work organization
This work is divided into 5 chapters. The remainder of this work is organized in

the following chapters:
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• Chapter 2 describes the background of our approach, showing in more detail the

material that was used as a basis for the research.

• Chapter 3 presents our framework to verify properties of activity diagrams in the

context of an open modeling environment. It details how the activity diagram

checker works for the OpenMBEE environment.

• Chapter 4 evaluates the results found by our framework in our case study.

• Finally, Chapter 5 brings the conclusions and discuss future directions.
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2 Background

In this chapter, the theoretical topics related to our work are presented. In Sec-

tion 2.1 we present what the CSP language is, how a CSP specification works, how our

work uses them and finally we discuss about the FDR tool. In Section 2.2, we detail

SysML activity diagrams.

2.1 CSP
This section is divided in two parts, Section 2.1.1 makes a brief explanation about

sequential processes, while Section 2.1.2 describes the semantics of the CSP language.

2.1.1 Sequential Processes

Before we talk about more complex issues such as the CSP language or models,

it is interesting to present a more basic and equally important concept, which is that

of sequential processes. To better understand, first let’s abstract the computers and

focus on the things around us and how they interact with each other. Let’s imagine an

arcade and some of it’s machines, a simpler machine like a slot machine, how could we

describe how it works?

• Insert the coin

• Pull the lever

• Take the reward

Now for a more complex machine like an arcade machine where you can play

different games like Street Fighter or King of Fighter, it would have a greater variety of

events like:

• Insert the coin

• Choose the game

• Select game mode

• Pick your fighters

• Pass the stages

• Take your reward



Chapter 2. Background 18

Each of these events can be organized in different orders that represent the possible

scenarios of execution of the system. When we perform permutations one by one in the

order of these possible scenarios, it is possible to perceive the expansion capacity of

this model and, consequently, the difficulty in analyzing them. To make it even more

difficult, models like the one described above that are written in natural language allow

multiple interpretations. For example, in the event Pass the stages, the conditions for

this to happen were not described, so designer 1 might think the condition would be

x while designer 2 would say y. This interpretive duality tends to increase especially

when more complex elements such as decisions, parallelism, and aligned invocations

are added to models. When we add these complex elements together with the increase

in the size of the models due to permutations of the order of events, it is necessary to

use the tooling power to solve this issue. In this work we use the formal language CSP

to allow the use of such tools.

2.1.2 CSP language

According to (SCHNEIDER, 1999), the CSP language was designed for describ-

ing systems of interacting components, and it is supported by an underlying theory for

reasoning on them. A CSP process is the basic unit of behavior description. It is defined

in terms of events or other processes. Events are linked to channels, which may or

may not communicate some type of data. The mathematical form of CSP cannot be

read by a computer and for that, another version of CSP was developed, (ROSCOE,

1998) named it CSPM , a machine-readable version of CSP that can be understood by

computers.

Let’s use the arcade machine example from Section 2.1.1 to demonstrate how

a CSPM process is written. Each of those events can represent a functionality of that

machine, and to facilitate this representation, we can name each of them. We could

name each of these events in a way that takes up less space but preserves the meaning,

for example:

• inCoin

• selGame

• selGMode

• selFighters

• actPlay

• outRwd
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In this example the prefix in would represent an input, sel would be for a selection,

act for an action and out for an output. Furthermore, we can call the set of all these

events as the process alphabet, in the mathematical CSP it is symbolized by the Greek

letter α(Alpha), and for practical purposes we will use the acronym AM to abbreviate

arcade machine.

Alpha (AM) = { inCoin , selGame , SelGMode , Se lF igh ters ,

actPlay , outRwd }

The process name starts with capital letters. In CSP language, an event can be

followed by a process or an event. To be followed by an event, we use the model a -> b,

where a is an event and b can be the same or another event, as seen in the example:

inCoin -> selGame, however, one event followed by another does not constitute a valid

CSP process. For an event to be followed by a process, we use the following model a

-> P, where P is any process, outRwd -> SKIP is an example of this. To show that the

process has ended successfully, the SKIP process is added to the end. So if we want to

describe the arcade machine process it would look like this:

AM = inCoin −> selGame −> selGMode −> Se lF igh te rs −> actP lay −>

outRwd −> SKIP

A process does not need to represent the entire system and, therefore, a pro-

cess can invoke another, including itself, during its execution or termination. Another

characteristic of processes is that the execution order does not always have to be a

single, fixed path. For this there are two choice operators, which are represented by

the symbols [] and |~| . The first one represents external choice, where two options

are offered. The second one is for internal choice where the system internally decides

which path to take. Although an inner-choice operator always leads to non-determinism,

other operators such as outer-choice can also cause it. Then, if we modify the arcade

machine, process to include these properties we can specify the following process:

AM = inCoin −> selGame −> selGMode −> Se lF igh te rs −> actP lay −>

( outRwd −> SKIP [ ] outRwd −> AM)

With this modification, at the end of the execution, it is possible to choose between

ending the process or starting it over so that the user can play again.

Events can communicate data through three operators: ’.’ , ’?’ ’ and ’!’. For exam-

ple, the inCoin can generate an input data using the ’?’ operator: inCoin?x. The outRwd

can communicate an output data with the ’!’ operator: outRwd!y. The ’.’ operator is used

to explicitly communicate a value. However, to be able to carry out these communi-

cations it is first necessary that these events are declared as channels. To do this we

specify the listing below:

channel inCoin : i n t
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channel outRwd : i n t

When turning these events into channels that communicate integers (type int),

we also need to modify our AM process so that it is correct again:

AM = inCoin?x −> selGame −> selGMode −> Se lF igh te rs −> actP lay −>

( outRwd !1 −> SKIP [ ] outRwd !1 −> AM)

As the specification is getting more complex, we can add more details on the

system like, what if the price to play the game is 2 coins but the user only put 1? We

can make an adjustment to cover it by adding guards on some events.

AM = inCoin?x −> ( x >= 2 & ( selGame −> selGMode −>

se lF i gh te r s −> actP lay −> ( outRwd −> SKIP | outRwd −> AM) ) )

In this specification, if the guard condition is not accepted, it will behaves as the process

STOP. The process STOP is used to represent an unsuccessful end for the process,

this is a deadlocked process.

Regarding concurrency, CSP has some operators, among them we have the

Interface parallel. In this operator, two processes are put in parallel and synchronized

by an alphabet of events, this operator can be represented by A [|alphabet|] B. These

two processes act independently until one of the events present in the alphabet is

encountered, at that point the process can only continue its execution when the other is

also ready to perform that same shared event.

CSPm has many more operators that are not covered on this section like: hiding,

interruption and interleave. You can read more about it on (ROSCOE, 2010).

As previously mentioned, in this work we use the FDR tool to verify properties

such as deadlock and non-determinism. The FDR tool takes as input a specification

in CSPm and translates it into a Labelled Transition System (LTS) (ROSCOE, 1998),

which is a directed graph where the transitions between states represent events of the

CSP specification. It has notation similar to a state machine. This state machine is then

exhaustively checked for the desired property. When it does not hold, the tool generates

a counterexample trace that is returned to the user. Due to the need for an exhaustive

search, some optimization functions are also offered by FDR, such as the normal()

function. This function performs a normalization on the LTS, which can reduce the state

space, thus, reducing the analysis complexity. This normalization preserves the original

semantics of the specification.
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2.2 Activity Diagram
The activity diagram makes a lot of features available in a simple and intuitive

way for designers, that is one of the reasons why it is one of the most used diagram

types on industry right now (REGGIO et al., 2013). These diagrams can be represented

by directed edges that control both the execution flow and the data flow between nodes

through the use of control and object tokens. There are three categories of nodes: Action

node, Control node and Object node.

Figure 2 – Example of an SysML activity diagram
Source: Diagram Retrieve Reference Beam Map available on the MMS

Action nodes can be of several types, some of the most used are: simple action

node that executes some behavior at that point, send signal node that creates a signal

instance and transmits it to the target object, accept event node that waits for a signal

reception to proceed, and call behavior action node, which represents the invocation of

another activity. In Figure 2, there are six call behavior actions, Get Shear Plate Position,

Get CCD Temperature, Get K mirror Position, Check for existing reference beam map,

Calibrate Reference Beam Map and Load the existing reference beam map nodes.

There are seven types of control nodes. Decision node selects through guards

which route will be taken. Merge node that brings together multiple alternate flows, it
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is not used to synchronize concurrent flows but to relay any token received by one of

its incoming edges to its unique outgoing edge. Fork Node splits a flow into multiple

concurrent flows and join node synchronizes multiple incoming concurrent flows into one

outgoing flow. Initial node offers a single control token when the activity starts, while a

final flow consumes a token received in its incoming flow. The final node terminates the

execution of its owning activity once it is reached. Some of these nodes are represented

in Figure 2, the fork node is the horizontal black bar on the top, while the join node is the

one on the bottom. Both, the decision and the merge node are represent as the white

diamond, the initial node is the black dot on the top and the final node is the white circle

with a black dot inside on the bottom left of the figure.

Object nodes are used to represent data inside the diagram. Some of the most

used object nodes are: activity parameter node that is used for accepting values from

the input parameters or providing values to the output parameters of an activity and pin

nodes that provides input values to an action or accepts output values from an action.

Once again in Figure 2, we have two output pins that can be seen on the Get shear

Plate Position node and Check for existing reference beam map node.

Regarding edges, we have control edges and object edges. The former are

traversed by control tokens, these tokens are used to control the order of execution of

nodes. Meanwhile, object edges are traversed by object tokens that may hold values.

In Figure 2, Control edges are represented by dashed lines, while object edges are

represented by full lines. The representations are being based on the SysML model, the

language used to create the Retrieve Reference Beam Map diagram from the Figure 2.

As already mentioned in Section 2.1.1, when we add complex elements to the

model, its complexity for the analysis grows exorbitantly. Like the parallelization of three

diagram invocations, as in the case of Get Shear Plate Position, Get CCD Temperature,

Get K mirror Position nodes, followed by a decision of what other diagram will be invoked.

To demonstrate how much a single invocation of another diagram can grow, Figure 3

represents the diagram invoked by the Calibrate Reference Beam Map node of Figure

2. This invoked diagram contains eleven action nodes and seven of them also invoke

other diagrams.

Analyzing such a diagram without using an appropriate tool can take days or

even weeks due to the need to verify each possible scenario. When we grow even

further in the scale of models, analysis without tools becomes unfeasible both in terms of

time and effort, in addition to increasing the chance of failures going unnoticed. Despite

this, nowadays there are not so many approaches that deal with this kind of problem, so

in this work we use the translation approach to a formal language that has the tooling

support to try to solve it.



Chapter 2. Background 23

Figure 3 – Diagram invoked by the Calibrate Reference Beam Map node
Source: Diagram Calibrate Reference Beam Map available on the MMS
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3 Activity Diagram Checker for OpenMBEE
environment

In this section, the entire property checker process is presented. In Section 3.1 we

discuss the architecture of the framework, Section 3.2 details the OpenMBEE adapter

sub module, Section 3.3 we show the new CSP semantics and finally, Section 3.4

explains the verification and traceability process.

3.1 Framework architecture
In this work we used the new architecture created in (DOMINGUES, 2021) and

added a new package called OpenMBEE in the adapters part. Thus, the architecture

used in this work can be seen in Figure 4.

Figure 4 – Framework architecture

In the upper part of Figure 4, we have the internal part of the framework architec-

ture, represented by the light blue box, while in the lower part we have the dependencies.

The Java Virtual Machine (JVM) is a virtual machine that allows a computer to run

programs in the Java programming language (GOSLING et al., 2000), the language in

which the framework has been developed. The FDR model checker tool is necessary
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so that it is possible to verify deadlock and non-determinism properties in the CSP

specification derived from the activities. In the internal part of the framework code, we

have the presence of six modules: controller, interface, parser, adapters, traceability

and FDR bridge.

The controller module is responsible for receiving client requests, performing

internal communication between the framework modules and returning the counterex-

ample when it exists. The interface module, on the other hand, contains an API with

interfaces that describe functions and elements of how we represent an activity. When

implemented by the adapter module packages, these objects can be passed to the parser

module to generate CSP specifications. The Parser CSP module is a tool-independent

module, which receives the encapsulated object that represents an activity, according

to the Interface module, and generates a CSP code equivalent to that activity diagram,

following the defined CSP semantics, which are discussed in Section 3.3. The FDR

bridge module is responsible for carrying out all the communication with the FDR tool.

Through the use of dynamic programming technique, Java Reflection allows us to load

the FDR library and use its attributes and methods at runtime. From the event trace

that the FDR returns to the FDR bridge module, the traceability module creates the

counter example, when necessary, and forward it to the controller module. Finally, the

adapter module performs all the communication between the modeling environment

and our framework, and also encapsulates the activity data according to definitions in

the Interface module. Once implemented, the data is forwarded to the controller module

that sends it to the parser module to generate the equivalent CSP code. This module

has two adapter packages, the first for the Astah modeling tool, more details about its

latest version can be found in (DOMINGUES, 2021). The second that was created in

this work is for the OpenMBEE environment, which will be further detailed in the next

section.

3.2 OpenMBEE sub module
As described in (OPENMBEE, 2021), ”The Model Management System provides

services for managing models and is a version control system for structured data. It

exposes model information through RESTful web services that can be used for CRUD

operations, branching, and tagging of the model repository”. This exposure of information

is performed through the use of files in the JSON format, which can be consulted through

a swagger interface, that will be better described on Chapter 4.

To give a better understanding of the framework verification process, Figure 5

illustrates it in a graphical and simplified way. In it we can see that the client makes the

request for our framework, which is represented by the square with rounded edges of light
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blue color in the center of the figure. From there, all the necessary verification requests

are made to the MMS API. This API returns a series of JSON files corresponding to the

diagram elements to be verified. Figure 6 shows a shortened version of one of these

returned JSON files. In it we can extract relevant information such as the type of that

item being represented, its name, the ids of the owned elements. Once all the JSONs

are collected, the framework performs all the necessary internal operations to generate

the equivalent CSPm specification. This specification is passed to the FDR tool, which

then performs the verification of the desired property. If a deadlock or non-determinism

is found, a trace of CSP events is returned to the framework. Finally, the framework

receives this trace, converts it into a JSON file containing the id of all the elements of

that diagram that generated the path to the property found and returns it to the client.

To delve in more detail, let’s talk now about the OpenMBEE sub module.

Figure 5 – Framework process

The OpenMBEE sub module is the main contribution of this work. In Figure 7

we can see how its architecture is structured. The communication layer is responsible

for carrying out all requests to the REST API of the OpenMBEE MMS environment, in

addition to transmitting the data received to the other packages, joining the structures

created by them so that they can be passed to the controller module. In order to make

requests to the MMS, it is necessary to pass the login and password to the package

to access the environment, along with the id of the diagram to which the property
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Figure 6 – Shortened version of a returned JSON file

verification is going to be checked and which type of verification is desired, deadlock or

non-determinism.

The utility class contains a series of public and static functions that are used

during communication and creation of objects that implement the interface module API.

In this class it is possible to find functions for:

• Adaptation of JSON data types received from MMS

• Node and edge nomenclature checker and corrector

• Primitive type generator

• Definition of data types used in the diagram

The ActivityElementBuilder interface is implemented by all builders in this pack-

age. It is used to create a basic unit of an activity diagram object. The builder package

consists of seven classes that build a specific type of element from an activity diagram.

They are:
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Figure 7 – OpenMBEE sub module architecture

• ActionBuilder creates action node types, and currently, we support the types shown

on Table 1.

• ControlBuilder creates control type nodes, it also supports seven node types as

shown on Table 2.

• DiagramBuilder generates the structure of an activity diagram.

• FlowBuilder is responsible for creating the two types of edges shown on Table 3.

• ObjectBuilder creates object type nodes, the three types are shown on Table 4.

• PartitionBuilder creates an activity diagram partition.

• TypeBuilder generates the data types used by the object nodes.

Finally, the adapter package is responsible for the existing classes in the OpenM-

BEE sub module. It contains all the types already mentioned in the constructor package

in addition to the abstract types they inherit from such as:

• ActionNode: all classes generated by the ActionBuilder package inherit from this

class

• ControlNode: all classes generated by the ControlBuilder package inherit from

this class

• ObjectNode: all classes generated by the ObjectBuilder package inherit from this

class
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Table 1 – Action nodes representations

• Activity: while a diagram represents the view of an activity, this represents the

activity attached to it. It is mainly used for invocations from the Call Behavior Action

node.

• ActivityNode: represents the most basic unit of an activity node

3.3 Translation into CSP semantics
In this section, we will discuss how to translate an activity diagram taken from

MMS to a specification in CSPm. In Figure 8, we can see in a generic way how a CSP

specification is structured.

The external part named MainProcess represents the CSP process that encap-

sulates the activity. It composes in a synchronized parallelism two other process, Nodes

and TokenManager. Upon receiving a signal from the startActivity channel, the two

processes are started and when the endActivity channel communicates some data, it
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Table 2 – Control nodes representations

Table 3 – Edges representations

means the termination of the activity. The synchronization is represented by the || symbol

and contains a synchronization alphabet, which in this case is specified as {update,

clear, endDiagram}. The TokenManager process is responsible for managing the active

tokens in that activity diagram. The process Nodes invokes i other sub processes, where

i is the number of nodes of that diagram. Each process synchronizes with each other

through its own synchronization alphabet represented in this figure by α(n_n), where

each of these parameters represents a specific process of a node. In addition, node
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Table 4 – Object nodes representations

Figure 8 – CSP specification structure
Source: (LIMA; TAVARES; NOGUEIRA, 2020)

processes can also synchronize through send signal and accept event node events,

these events can be used to synchronize one or more activities that may be running in

parallel.

In this work we use the semantics already defined in (LIMA; DIDIER; CORNéLIO,

2013; LIMA, 2016; LIMA; TAVARES; NOGUEIRA, 2020). However, throughout the work

we realized the need to define semantics to support more types of data, in this case,

composite data types. That’s why we defined two new mapping rules for generating

CSP semantics to support these new data types, these semantics are better defined in

the following subsections.

3.3.1 Datatype

In order to facilitate understanding, we show the graphical representations of the

elements instead of their respective JSON.

In the Find and identify diagram of Figure 9 it is possible to notice that the

parameters are of non-primitive types. Let’s take the input parameter shImage for

example. If we open the specification of the data type SH_Image, shown in Figure 10, it

is possible to verify the existence of two attributes: pix and header, both of them are

from the primitive type Integer.
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Figure 9 – Find and Identify diagram available on the MMS

Figure 10 – Specification of the SH_Image datatype

The semantics starts with the creation of each attribute’s type. The left part is

the {attributeType+ _ +DiagramName} and the right part is the range of value of this

specific type. As FDR uses a method close to brute force, it is necessary that a range

of values be stipulated for each type so that there is no memory overflow of possible

combinations. If we were to write generically we would have:

attribute1Type_DiagramName = { TypeMinimunValue . . TypeMaximumValue }

. . .

attributeNType_DiagramName = { TypeMinimunValue . . TypeMaximumValue }
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After that, we define each attribute. For it, the semantic is defined as follows:

{attributeName+ _ +DiagramName} = {attributeType+ _ +DiagramName}. In a generic

way:

attr ibute1_DiagramName = attribute1Type_DiagramName

. . .

attributeN_DiagramName = attributeNType_DiagramName

For the last part we generate the specification of the datatype, in CSP there is

the reserved word datatype. By using it together with the prefix type, the type name and

the suffix DiagramName, we write the left part. For the right part we have the type name,

the same suffix and for each attribute that the datatype has, we add { attributeName + .

+ suffix}. The main part result is the following:

datatype type_NameType_DiagramName =

NameType_DiagramName . attr ibute1_DiagramName . . . attributeN_DiagramName

Using these generic structures, we can develop a concrete example for SH_Im-

age, which can be seen in the following code snippet:

I n t _F i ndand i den t i f y = { 0 . . 1 }

p i x_F indand iden t i f y = I n t _F i ndand i den t i f y

header_F indand ident i f y = I n t _F i ndand i den t i f y

datatype type_SH_Image_Findandident i fy =

SH_Image_Findandidenti fy . p i x_F indand iden t i f y . header_F indand ident i f y

Originally the Integer type of pix and header goes up to 100000, however to

avoid a memory overflow we reduced it’s range, in this case the chosen interval was 0

to 1.

3.3.2 Enumeration

Similar to the last semantic, for this one, in the left part we use the same reserved

word datatype, the prefix type and the type name. On the right part we write the name of

each contained element separated by the character |. The generic way of writing this is:

datatype type_NameType = Element1 | Element2 | . . . | ElementN

We can observe the diagram Select Filter SH available in Figure 11. This time the

input parameter is of type SH Filter, if we look at its specification, available in Figure 12,

we can see that it is an enumeration that contains seven possible values: NPH-1/BB30,

BB-10(Backup), BB-3, BB-1, NPH-2/SH, BB-100 and Open, the exact meaning of each

name is irrelevant to the specification. So for SH Filter, using the generic formula we

generate the following specification:
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Figure 11 – Select Filter SH diagram available on the MMS

datatype type_SHFi l te r = NPH_1_BB_30 | BB_10_Backup_ | BB_3 | BB_1 |

NPH_2_SH | BB_100 | Open

3.4 Verification and traceability
To perform the checks on the FDR via code, it is necessary to add the commands

in the code, for this we add the following two lines of code, where MAIN is the CSP

process that represents the semantics of an activity.

asser t MAIN : [ deadlock f ree ]

asser t MAIN : [ d e t e rm i n i s t i c ]

The first line is used to verify the existence of deadlocks, while the second line is used

to verify if the CSP process is deterministic. When reading these commands, FDR

internally uses the global analysis technique, exhaustively checking the model. That is

why it is fundamental to propose an well-defined and less complex semantics together

with optimizing function to reduce the state space when possible. Once finished, if the

property does not hold, the tool creates a CSP event trace that represents the entire path

taken by the specification to that violation. To represent an event trace, let’s assume
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Figure 12 – Specification of the enumeration SHFilter

that Figure 9 had the outgoing edge of the opaque action removed, thus generating a

deadlock. The generated trace would be this:

< s t a r t A c t i v i t y _ F i n d a nd i d e n t i f y . 1 . SH_Image_Findandidenti fy . 1 . 0 ,

update_F indand iden t i f y . 1 . 2 . 1 ,

oe_1_Findandident i fy . 1 . SH_Image_Findandidenti fy . 1 . 0 ,

even t_Execu teF indand Iden t i t yA lgor i thm_F indand iden t i f y .1>

In this, the first represents the start of the activity, the second a token update, the third

the data traffic over the object edge and the fourth the event performed by the Execute

Find and Identity Algorithm action. This event trace is then returned to the framework.

To perform traceability, we take the alphabet of each node and identify which nodes and

edges were traversed during its execution. For this example we would get the following

list of ids:

[ _18_0_5_c0402fd_1461618020872_818345_179201 ,
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_18_0_5_c0402fd_1461618443836_316998_180228 ,

_18_0_5_c0402fd_1461618422523_981297_180201 ,

_18_0_2_baa02e2_1415755464319_82416_80418 ]

These ids represent, respectively: the input parameter shImage, its outgoing

edge, the input pin of the action Execute Find and Identity Algorithm and the action itself.

Once we have the list of nodes and edges in hand, we create a list of JSONObjects where

each element contains the diagram name, the ids of each node and edge traversed

by it and the id of its corresponding invocation. At the end this list is added to a single

JSONObject which is then returned as the counterexample. Figure 13 shows what the

generated counterexample JSON for that list of ids would look like.

Figure 13 – Counterexample JSON
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4 Evaluation

This chapter has two sections, Section 4.1 shows the necessary preparations for

creating the environment, while Section 4.2 talks about the study case.

4.1 Environment preparation
During the first stages of this work, we used the public version of MMS. In this

version, our privileges only allowed the reading of existing models in the MMS. This

ended up limiting the development of the framework. Moreover after a period of time this

version was deactivated, thus making it impossible for the work to continue in that way.

In order to continue the work, we looked for other public versions of MMS, however, the

option we found was an outdated version not compatible with our work. So, we decided

that it would be necessary to set up our own instance of an MMS that was compatible

with the latest release we had already developed. Another advantage of setting up our

own instance of the MMS is that we would be able to make changes to the files, thus,

being able to obtain more significant results.

To be able to create our own version of MMS, first, we have identified the

technologies required to set a new server. Searching the existing public documents of

OpenMBEE, we found tutorials on one of their GitHub pages on how to use Docker

(MERKEL, 2014) for this. From these tutorials, we used the following technologies to

develop our version:

• Docker

• Java SE Development Kit 11

• Postgresql

• Elasticsearch

• MinIO

• Gradle

• Spring

Version 4.0.7 of the MMS Reference Implementation or MMSRI, which is used in

this project, was developed in the Java language, so it was necessary to use the Java

SE Development Kit 11 (JDK 11). For the storage part, Postgresql andminIO were used,
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Elasticsearch for the search part, Gradle and Spring for the construction part. The usage

of these technologies was facilitated through Docker, which allowed us to use the Docker

compose technique that loads the images of the versions we want of these technologies,

through a single file. The images used in Docker compose were: postgres:11-alpine

for Postgresql, docker.elastic.co/elasticsearch/elasticsearch:7.8.1 for elasticsearch and

minio/minio:latest for minIO, in this case the version of the minIO is the latest released.

In addition, a Linux virtual machine was created to run the Docker compose and activate

the local server. Figure 14 shows the Swagger interface generated by our version. Even

though we generate all these tabs, in this work we only use the following tabs:

• Auth: Responsible for carrying out requests related to authentication.

• Elements: Main tab used, it is responsible for requests to all individual model

elements, such as a node or an edge.

• Projects: Tab responsible for making requests about the project.

• Refs: Tab responsible for the project version.

Figure 14 – Swagger interface
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4.2 Case study
Now that we have the MMS running, let’s talk about our case study. For this work

we used the diagrams from the TMT project, whose name comes from the abbreviation

for Thirty-Meter Telescope. According to the project’s official website: ”The Thirty Meter

Telescope is a new class of extremely large telescopes that will allow us to see deeper

into space and observe cosmic objects with unprecedented sensitivity. With its 30m

diameter prime-mirror, TMT will be three times as wide, with nine times more area,

than the largest currently existing visible-light telescope in the world. This will provide

an unparalleled resolution, with TMT images more than 12 times sharper than those

from the Hubble Space Telescope.” (OBSERVATORY, 2021). This project is about a

telescope located on the island of Hawaii , which started its project in 2003. This project

has the support of several countries such as the USA, Japan and India. To start working

on our case study, we copied the project available in the public MMS to our private

version of MMS. With that, now it is possible to make changes to the TMT project model.

4.2.1 Structural verification

TMT is a very ambitious project. According to his document Detailed Science

Case (OBSERVATORY, 2021), he aims to answer some of the great questions of

astronomy such as:

• What is the nature and composition of the Universe?

• When did the first galaxies form and how did they evolve?

• What is the relationship between black holes and galaxies?

• How do stars and planets form?

• What is the nature of extrasolar planets?

• Is there life elsewhere in the Universe?

For this, he plans to cooperate with some of the biggest telescopes of this

decade like the James Webb Space Telescope, Large Synoptic Survey Telescope and

Atacama Large Millimeter Array. Its SysML model is considerable large, comprising

several elements like, requirements, blocks, use cases, state machines, and activities.

Of course, we are interested in the latter, and, although there are several functionalities

described in terms of activities, we decided to focus on the Setup APS, Acquire and Start

Guiding activity, which is presented, in Figure 15. This part of the project is responsible

for configuring the Alignment and Phasing System (APS) in preparation for a specific

alignment activity, acquires and guides on a new object and starts the Pupil Image
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Tracking loop (PIT) depending on the input parameters to the activity. In this figure

we can see seven Call Behavior Action nodes: Ask OP to select a Star, Configure

APS for SH Test, Stop PIT Tracking, Send Star Coords to ExecSW for Acquisition

and Orientation, Save M1CS Configuration, Start PIT Tracking and the already known

from Figure 2, Retrieve Reference Beam Map. To give an idea of the total size of the

Setup APS, Acquire and Start Guiding diagram, it contains more then 150 edges and

almost 200 nodes along it and all the diagrams invoked by it. In addition, within these

nodes there are also several forks that generate concurrent flows, thus increasing the

complexity even more.

Figure 15 – Diagram Setup APS, Acquire and Start Guiding

The first step carried out was to use our framework to find well-formedness flaws

in the model. We recall that the model must be consistently structured to translate the

activity to CSP. Some of these structural checks are captured by our framework. Using

it, we could identify the following syntactic problems:
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• In diagram Ask OP to select a Star :

1. One pin without base type

2. Datatype starcoord with three attributes without types

• In diagram Retrieve Reference Beam Map:

1. Decision node with ingoing object flow but outgoing control flow

2. One useless pin

• In diagram Check for existing reference beam map:

1. Three pins without base type

• In diagram Find and Identify:

1. Datatype SHImage with one attribute without type

2. Call Behavior without behaviorId(does not invoke any diagram)

3. Output parameter using a type without any attributes

4. One pin using a type without any attributes

• In diagram Calibrate Reference Beam Map:

1. Call Behavior that invokes an empty diagram

To solve these problems, we changed these diagrams as follows: Object nodes

and attributes without a type were given a type, the useless pin was removed, the Call

Behaviors invoking empty diagrams were replaced by Opaque actions and the edges of

the decision node were swapped to make them all of type object flow. Once these fixes

were performed, we were able to translate these diagrams into a CSP specification.

4.2.2 Deadlock and non-determinism verification

Once the CSP specifications have been generated, the framework send them to

the FDR tool to perform verification on the diagrams. By checking the diagram in Figure

2, we were able to identify a deadlock caused by an Accept Event node. This node is

located in the diagram invoked by the Call Behavior node Get CCD Temperature, shown

on Figure 16. This node waits indefinitely for a signal sent by a send signal action that

matches this accept event action. However, this corresponding node is not present in any

verified diagram, so the signal never arrives, causing the execution of this invocation not

to proceed and consequently the junction node of the main diagram is never reached. To

visually represent the path taken during execution, it is necessary to use some tool that

supports this function, however, for demonstration purposes only, Figure 17 shows the
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path taken in red. In addition to this case, it was possible to find some other deadlocks

along the diagrams. However, the others were caused due to the models consider the

relationship between activities and state machines. For instance, a signal can be sent by

a state machine and received in a activity to trigger some behavior. Nevertheless, our

framework currently does not support state machines and this relationship. Therefore,

the generated specifications would wait indefinitely for communications with events from

state machines that would never happen. We plan to consider these relationship in

future works.

Figure 16 – Get CCD Temperature diagram

Figure 17 – Visual representation of the path
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Figure 18 shows a modified version of the JSON counterexample of the deadlock

found in the case of Figure 17. In this version, an arrow was included in the right part

of each id to identify which type each one represents. In addition, we use ellipses

to represent some of the elements returned in the counterexample for the activities

Get Shear Plate Position and Get K mirror Position to improve readability. The id

_17_0_2_3_41e01aa_1382473227299_833303_50967 represents the id of the activity

as a whole, not of an activity-type node. The green numbers on the right in Figure 18

show the correspondence between the id and the element in Figure 17.

Figure 18 – Modified version of the counterexample JSON

Regarding non-determinism, a curious case was found in one of the diagrams

in which both guards of a decision node were identical. In this case, it is not possible

to control which of the two will be used by the system, thus, causing non-determinism.

Due to this non-determinism, it is possible that the call behavior action node Start PIT

Tracking, from Figure 19, is not invoked whenever it should. Just like when a deadlock

is encountered, in this case a JSON file is also generated describing the IDs of the

elements returned by the counterexample. Figure 20, shows another modified JSON

file, this time representing the non-determinism path found. As in the other modified

JSON, the green numbers on the right represent the id equivalent to the element from

Figure 19.
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Figure 19 – Decision node with identical guards

Figure 20 – Modified JSON from non-determinism counterexample
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5 Conclusion

Throughout this work, we presented the most recent version of our framework.

Now it is possible, up to a certain point, perform deadlock and non-determinism checking

on SysML activity diagrams that are available in the MMS open environment of the

OpenMBEE group, thanks to the new OpenMBEE sub module. For this version, we use

the formal semantics defined in previous works, which is based on the CSP process

algebra. In addition, the semantics for composite date types as datatypes and enumera-

tions has been defined. With the addition of these semantics, we aimed to increase the

expressiveness of our tool so that it could cover a greater amount of modeling scenarios

and consequently more real industry cases.

Although we made several additions to the framework structure, we managed to

keep all of them at a level hidden to the user. Thus, it can remain at the diagrammatic

level without the need to carry out algebraic manipulations on the CSP semantics present

in the verification. Considering that the formal CSP method is quite complex and uses

very rigorous algebra, a lot of users would not feel attracted to use it. Therefore, we

believe that the new traceability mechanism, based on JSON files, will increase the

attractiveness of our framework for all those who wish to perform manipulations on the

models available in the MMS.

5.1 Related works
The works described in this section use an approach similar to our strategy,

that is, translating activity diagrams to an underlying notation, usually for verification

purposes. These other languages, in turn, are able to generate a version equivalent

to the original diagram, but with the ability to perform property verifications through

verifiers.

In the work of (ELMANSOURI; HAMROUCHE; CHAOUI, 2011), they proposed

to use a meta-model for UML activity diagrams and a graph grammar that performs

the transformation of these diagrams, created in the AToM3 tool, into CSP semantics.

Despite the defined semantics being able to perform checks, none were performed in

the work.

In (LÓPEZ-GRAO; MERSEGUER; CAMPOS, 2004), a method is used to trans-

form activity diagrams into a Labeled Generalized Stochastic Petri Net (LGSPN). Once

these LGSPNs are composed, they are analyzed using the GreatSPN tool to obtain

performance indices. In this work, deadlock or non-determinism checks can not be
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performed.

(GUELFI; MAMMAR, 2006) turns UML activity diagrams into XPDL specifications.

However, the semantics defined by this work do not have any formal rules to support

them, in addition their authors state that the completeness or correctness of these

semantics are not guaranteed.

(OUCHANI; MOHAMED; DEBBABI, 2014) performs the verification of SysML

activity diagrams through probabilistic systems. This check is done by transforming

activity diagrams into equivalent PRISM models. After that, the PRISM model checker

is used to make the checks. The work deals with checks such as deadlock, however, it

does not provide any traceability mechanism.

(RAHIM; HAMMAD; BOUKALA-IOUALALEN, 2015) transforms activity diagrams

into modular PETRI nets, this transformation is done through meta models implemented

in the TOPCASED tool. After that, these meta models can be checked and detect

properties such as deadlock. Like the work mentioned above, this one also does not

present traceability mechanisms.

5.2 Limitations and future work
Currently, the framework is presented in a working way for some models. How-

ever, the tool does not yet support some SysML activity diagram elements such as

local precondition, local postcondition nor probability or rate. Furthermore, when dealing

with very large and complex models, due to the nature of the FDR tool verification, the

amount of states that the LTS has to verify can grow exponentially. Therefore, currently,

our tool limits the range of values allowed in primitive data types and consequently

composite types as well, thus reducing the number of verified states.

Therefore, in future works we hope to be able to correct these problems. In

addition, we also intend to continue increasing the expressiveness of the framework by

adding new modeling environments and new types of diagrams. So that it is possible

to verify models with more than one type of diagram, such as the case previously

mentioned in Subsection 4.2.2. We also consider expanding the existing ones, such as

implementing a plugin for modeling tools that use the OpenMBEE’s MMS to generate a

counterexample diagram instead of a counterexample JSON. Finally, carry out a more

detailed scalability study, to be able to identify which are the bottlenecks in our approach

and also what is the limit of it.
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