
Rafael da Camara Figueredo

Scaling agile methods in global software
projects: Is it possible with SAFe?

Recife

2020



Rafael da Camara Figueredo

Scaling agile methods in global software projects: Is it
possible with SAFe?

Monograph presented to the Bachelor of
Computer Science Course of the Federal
Rural University of Pernambuco as a partial
requirement to obtain the Bachelor of Com-
puter Scientist title.

Federal Rural University of Pernambuco – UFRPE

Computing Department

Bachelor of Computer Science Course

Orientador: Marcelo Luiz Monteiro Marinho

Recife
2020



Dados Internacionais de Catalogação na Publicação 
Universidade Federal Rural de Pernambuco

Sistema Integrado de Bibliotecas
Gerada automaticamente, mediante os dados fornecidos pelo(a) autor(a)

C172s Figueredo, Rafael da Camara
        Scaling agile methods in global software projects: Is it possible with SAFe? / Rafael da Camara
Figueredo. - 2020.
        79 f. : il.

        Orientador: Marcelo Luiz Monteiro Marinho.
        Inclui referências.

        Trabalho de Conclusão de Curso (Graduação) - Universidade Federal Rural de Pernambuco,
Bacharelado em Ciência da Computação, Recife, 2020.

        1. Agile Software Development. 2. Global Software Development. 3. Agile GlobalSoftware Development.
4. Software engineering. 5. Scaled Agile Framework . I. Marinho, Marcelo Luiz Monteiro, orient. II. Título

                                                                                                                                                   CDD 004



 
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO 

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO (UFRPE) 
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO 

 
http://www.bcc.ufrpe.br 

 

 
 

FICHA DE APROVAÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO 
 
Trabalho defendido por Rafael da Camara Figueredo às 14 horas do dia 03 de setembro de 2020, 
no link meet.google.com/qhb-eytf-mqi, como requisito para conclusão do curso de Bacharelado 
em Ciência da Computação da Universidade Federal Rural de Pernambuco, intitulado Scaling 
agile methods in global software projects: Is it possible with SAFe?, orientado por Marcelo 
Luiz Monteiro Marinho e aprovado pela seguinte banca examinadora: 

 

 
 

 
Marcelo Luiz Monteiro Marinho  
  
DC/UFRPE 

 
 
Suzana Cândido de Barros Sampaio  
DC/UFRPE 

 
 
 

 



To my family, my girlfriend, and my professors that supported me in this entire journey
…



Acknowledgments

First of all, I would like to thank all my family that believed in me since the be-
ginning, which supported and encourage me in everything I have been doing. I want
to thank mainly my mother, brother, brother in law and girlfriend, Conceição, Thiago,
Bruno, and Larissa to give me all the support and help I had needed before and during
the course. Also, I would like to thank my dad, that passed way in 2009, but that had
never forgotten to dedicate all of his life to his children and wife.

I am grateful for my brother who is truly an inspiration for me. He is the person
that most supported me, most encourage me to follow my dreams, which indirectly
proved to me that we can achieve whatever we want. Also, I want to thank him due to
the English review he had made of this research.

I am also thankful for my girlfriend, Larissa, that is with me since the middle of
the course. Without her, this journey would be much harder, thus having a person by my
side is extremely important to make me achieve my goals. I want to thank her for putting
up with me during weekends and long nights of work giving all the support needed. I
promise to make up for everything during our life.

Also, I would like to thank the most inspiring professors I have had during col-
lege, Marcelo and Suzana, that support me through the entire process of this research.
Without their support, I would never achieve the results of this project.

To professor Marcelo, I want to thank him for being extremely dedicated and
committed to everything he does, especially for this research and others he executed
with me. Also, I would like to thank him for being one of my professional and personal
inspirations, to help me during the bachelor course, and teach me the best of software
engineering.

To professor Suzana, I would like to thank her for being such a human with us,
understanding all of our points, encouraging us to achieve the best of ourselves, and
giving the best tips for the research written. Also, she is a personal and professional
inspiration for me, and I want to thank her for all the support and dedication she gave
in this project and to better understand my goals and objectives.

I am also thankful for all the professors of the computing department of the Fede-
ral Rural University of Pernambuco that had to contribute to my graduation. Specifically,
I would like to thank George Valença which was such important for me during the course
who always believed in my potential and encouraged me during challenging projects,
and also for being such an inspiration. Also, I would like to thank professor Carlos Julian



for being one of the best companies during graduation and for having one of the best
teaching didactics.

To all my friends, the ones I have made during the time at the University, Sa-
mantha, Thiago Gomes, Fábio, Felipe, Nycolas, Thiago Bastos, Anderson, Davi, Lucas,
Yuri and Elthon and Luizinho. I want to thank all of them for being present with me in
the good and bad moments and a lot of disciplines. Survive in the University was much
easier surrounded by them.

To Samantha, I would like to thank her for being a true partner for everything
inside and outside of the University. Since the first semester of the course in 2015, I am
with Samantha facing the hardest obstacles of the University and life. I wanna thank her
for all the support she gave me during my bad and good moments in my professional
and personal life. She is truly a friend that I will take for life.

To Thiago Gomes, I am grateful for being the most crucial person in my profes-
sional life as a software developer. I want to thank him since the support he gave me
as a monitor of the programming discipline, he opened my mind for other software te-
chnologies and encourage me to study it frequently. Also, I would like to thank him for
being a true friend in everything, and an inspiring person that has the persistence to
achieve anything that wants.

Also, I would like to thank Fabio for being with me in my first internship experi-
ence, for all the things I could learn from him, and all the partnerships we had to better
face the University. Also, I want to thank him for all the help he gave me during the
discipline projects, and for being one of the persons that most helped me to be a better
professional developer.

Withal, I would like to thank, Yuri, and Elthon, that directly helped me in the
conduction and execution of this research by searching, reading, and extracting data
for the systematic literature review.

Moreover, I would like to thank all the work colleagues from Di2win that suppor-
ted my graduation and also helped me to achieve it, specifically Saulo, Carlos, Paulo,
Felipe, Tarcísio, Mariana, Victor, Thiago, Matheus, Luna, Caio, Jorge.

Finally, I am thankful for every one that somehow helped to accomplish my ba-
chelor course.



“A persistência é o caminho do êxito.”
(Charles Chaplin)



Resumo
A desenvolvimento de software global continua crescendo substancialmente e está
rapidamente se tornando uma norma do desenvolvimento de software, sendo funda-
mentalmente diferente do da engenharia de software local. Embora os métodos ágeis
terem sido originalmente construídos para times pequenos, o desenvolvimento ágil de
software vem se tornando uma opção atraente para empresas que tentam melhorar
sua produtividade em times globais. O uso de práticas ágeis no desenvolvimento de
software global tornaram-se a principal opção para executar projetos em ambientes
distribuídos devido aos seus benefícios relacionados a uma melhor comunicação, co-
ordenação, produtividade e qualidade do projeto. Entretanto, enquanto empresas con-
tinuam crescendo, junto a complexidades e desafios que surgem rapidamente, muitos
dos seus projetos vem se tornando globais e de larga escala, o que faz elas buscarem
constantemente como adaptar o ágil nesses cenários e consequentemente como es-
calar o ágil para uma melhor coordenação. A literatura atual não fornece uma imagem
coesa de como as práticas ágeis são de fato implementadas em um ambiente distri-
buído, e também como elas podem ser escaladas em projetos globais de larga escala.
Faltam informações sobre como como usar e escalar o ágil em cenários distribuídos,
quais práticas ágeis e escaláveis funcionam nas equipes de desenvolvimento de soft-
ware global, e por fim, quem deve aplicá-las. Com base nessa lacuna da literatura, este
estudo tem como objetivo destacar como as práticas ágeis são aplicados no contexto
de desenvolvimento de software global, a fim de desenvolver um conjunto de técnicas
que possam ser relevantes tanto na pesquisa quanto na prática. Além disso, o estudo
visa destacar um conjunto de práticas ágeis usadas pelas equipes de desenvolvimento
de software global para escalar o ágil e mapear essas práticas com as práticas do “Sca-
led Agile Framework” (SAFe). Para responder as duas perguntas de pesquisa, sendo
a primeira: “Como as práticas ágeis são adotadas nas equipes de desenvolvimento
de software global ágil?” e a segunda: “Quais são as práticas relatadas na literatura
de desenvolvimento de software global ágil que adotam práticas do SAFe ao adotar
o desenvolvimento ágil escalável?”, foi conduzida uma revisão sistemática da litera-
tura nas áreas de desenvolvimento de software ágil, global e global ágil. Uma síntese
das soluções encontradas em setenta e seis estudos forneceu 48 práticas ágeis distin-
tas que empresas podem implementar em ambientes distribuídos globalmente. Além
disso, dessas 48 prátias ágeis, foi possível identificar 18 práticas ágeis escaláveis que
adotam as práticas do SAFe. Essas práticas implementáveis são úteis para fornecer
soluções para gerenciar times globais com agilidade, enquanto as práticas do SAFe
vinculadas as práticas ágeis escaláveis fornecem diretrizes para melhor escalar o ágil
em projetos globais de larga escala.



Palavras-chave: Desenvolvimento de software ágil, Desenvolvimento de software globa,
Desenvolvimento software global ágil, Engenharia de software, Ágil em larga escala,
Métodos ágeis, SAFe, Revisão sistemática da literatura.



Abstract
Global Software Development (GSD) continues to grow substantially and it is fast be-
coming the norm and fundamentally different from local Software Engineering develop-
ment. Withal, agile software development (ASD) have become an appealing choice for
companies attempting to improve their performance although its methods were orig-
inally designed for small and individual teams. Despite it, agile practices in Global
Software Development (AGSD) has become the main option to execute projects in
distributed environments due to its benefits of better communication and coordination,
improved productivity, and quality. However, while organizations continue to grow, the
complexity and challenges arise fast, many companies are dealing with large-scale
global projects and looking for how to adapt agile in those scenarios and scaling agile
practices to coordinate them. The current literature does not provide a cohesive picture
of how the agile practices are taken into account in the distributed nature, and also how
to scale than in large-scale AGSD projects. It lacks data on how to use agile and also
scale it in GSD settings, which agile and scaling agile practices work in Global Soft-
ware Development (GSD) teams and who are supposed to apply them. Based on this
literature gap, this study aims to highlight how ASD practices are applied in the context
of GSD to develop a set of techniques that can be relevant in both research and prac-
tice. Furthermore, it also aims to highlight a set of agile practices that are used by GSD
teams to scale agile and map those practices with Scaled Agile Framework (SAFe). To
answer both of the research questions, first: “How agile practices are adopted in agile
global software development teams?”, second: “Which practices reported in AGSD lit-
erature embrace practices from SAFe when adopting scale agile development?”. It was
conducted a systematic literature review of the ASD, GSD, and AGSD literature. A syn-
thesis of solutions found in seventy-six studies provided 48 distinct agile practices that
organizations can implement in globally distributed settings. Furthermore, from those
48 agile practices, it was possible to identify 18 scaling agile practices embrace SAFe
practices. These implementable practices go some way towards providing solutions to
manage GSD with agility, while the linked SAFe practices provide guidelines for better
scale agile in large-scale global projects.

Keywords: Agile Software Development, Global Software Development, Agile Global
Software Development, Software engineering, Large-scale agile, Agile methods, SAFe,
Systematic Literature Review.



Lista de ilustrações

Figura 1 – Research method diagram. . . . . . . . . . . . . . . . . . . . . . . . 26
Figura 2 – Research methods types distribution. . . . . . . . . . . . . . . . . . 33
Figura 3 – Research type facets over time. . . . . . . . . . . . . . . . . . . . . 34
Figura 4 – Contribution type facets over time. . . . . . . . . . . . . . . . . . . . 34
Figura 5 – Distribution of research methods by year. . . . . . . . . . . . . . . . 35



Lista de tabelas

Tabela 1 – Research string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Tabela 2 – Research periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Tabela 3 – Papers by engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Tabela 4 – Papers by engine phase 3. . . . . . . . . . . . . . . . . . . . . . . . 29
Tabela 5 – Quality assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Tabela 6 – Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Tabela 7 – Scaling practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Lista de abreviaturas e siglas

ASD Agile Software Development

GSD Global Software Development

AGSD Agile Global Software Development

SAFe Scaled Agile Framework

XP eXtreme Programming

PO Product Owner

SLR Systematic Literature Review



Sumário

Lista de ilustrações . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.1 General Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.2 Specifics Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1 Agile Software Development - ASD . . . . . . . . . . . . . . . . . . 18
2.2 Global software development (GSD) . . . . . . . . . . . . . . . . . . 19
2.3 Agile Global software development (AGSD) . . . . . . . . . . . . . 19
2.4 Scaled Agile Framework® . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Systematic Literature Review . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Document selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1.1 Inclusion/Exclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Study Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 RESEARCH DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . 32
4.1 Overview of the primary studies . . . . . . . . . . . . . . . . . . . . 32
4.2 RQ: How are agile practices adopted in agile global software deve-

lopment teams? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Daily meeting (36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Communication practices (34) . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Planning (24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Scrum of scrums - SoS (20) . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.5 Visits among sites (20) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.6 Retrospective meeting (19) . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.7 Sprint (19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



4.2.8 Product backlog (18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.9 Backlog management (16) . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.10 User stories (15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.11 Pair programming (15) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.12 Sprint review (14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.13 Self-management (13) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.14 Continuous integration (11) . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.15 Burndown charts (11) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.16 Synchronize work hours (10) . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.17 Coaching (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.18 Task management (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.19 Necessary documentation (9) . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.20 Kanban board (8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.21 Design the team (8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.22 Co-locate all team members at the beginning (8) . . . . . . . . . . . . . 46
4.2.23 Test driven development - TDD (7) . . . . . . . . . . . . . . . . . . . . 46
4.2.24 Project wiki (7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.25 Estimation meeting (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.26 Continuous deployment (6) . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.27 System demo (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.28 Test automation (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.29 Code review (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.30 Collaboration among teams (6) . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.31 Manage customer expectations (6) . . . . . . . . . . . . . . . . . . . . . 49
4.2.32 Planning game (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.33 Continuous delivery (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.34 Assign a role to each project member (5) . . . . . . . . . . . . . . . . . 50
4.2.35 Agile architecture (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.36 Coding standards (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.37 Collective code ownership (5) . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.38 Refactoring (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.39 Frequent feedbacks (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.40 Bug tracking (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.41 Documentation of lessons learned (4) . . . . . . . . . . . . . . . . . . . 52
4.2.42 Share mission and vision (3) . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.43 Rotate team members among sites (3) . . . . . . . . . . . . . . . . . . . 52
4.2.44 Simple design (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.45 Roadmap Planning (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.46 Acceptance tests (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



4.2.47 Tests management (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.48 Expand teams responsibility gradually (2) . . . . . . . . . . . . . . . . . 54
4.3 Discussion and Conclusion of agile practices in AGSD . . . . . . . 54
4.4 Which practices reported in AGSD literature embrace practices

from SAFe when adopting scale agile development? . . . . . . . . 55
4.4.1 Communication practices . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Scrum of Scrums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Visits among sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.4 Kanban board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.5 Task management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.6 Agile coaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.7 Document necessary information . . . . . . . . . . . . . . . . . . . . . . 59
4.4.8 Synchronize work hours . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.9 Project wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.10 System demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.11 Assign a role to each project member . . . . . . . . . . . . . . . . . . . 60
4.4.12 Collaboration among teams . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.13 Agile architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.14 Coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.15 Share mission and vision . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.16 Simple design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.17 Roadmap planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.18 Expand teams responsibility gradually . . . . . . . . . . . . . . . . . . . 63
4.5 Discussion and conclusion of scaling agile practices in AGSD . . . 63
4.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 FINAL CONSIDERATION . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Limitations and threats to validity . . . . . . . . . . . . . . . . . . . 67
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



15

1 Introduction

Two strong trends shape modern software engineering. First, companies are
strongly required to embark on Global Software Development (GSD) endeavors, among
other things to attempt to lower production cost and increase the pool of available, ta-
lented individuals. Second, agile software development (ASD) is increasingly applied in
(distributed) projects to support a more dynamic products handling (HILLEGERSBERG;
LIGTENBERG; AYDIN, 2011).

Agile and global software development (AGSD) is currently a significant trend
(VALLON et al., 2017). VersionOne of the 14th annual state of the agile report states
that 71% of respondents said their organization practices agile with multiple co-located
teams collaborating across geographic boundaries (VersionOne, Inc., 2020). AGSD
leads to many challenges, given the inherent nature of both paradigms: ASD and GSD.
On the one hand, GSD communication is commonly based on documents, i.e., explicit
knowledge that decreases the effect of the four distances of this paradigm (physical,
temporal, linguistic, and cultural) (MODI; ABBOTT; COUNSELL, 2017). On the other,
the agile manifesto (BECK et al., 2001) states that, in ASD, face-to-face interactions
are preferable to following strict communication processes and working software is pre-
ferable to comprehensive documentation (LOUS et al., 2018b; ALTAF et al., 2019).

Moreover, software development organizations are looking for support on how
to implement agile methods, and how to do it within a global environment. However,
it is still unclear how to ensure the use of agile methods while the organization con-
tinues to grow and the complexity and challenges arise. Therefore, scaling agile re-
mains a challenge in software development, due to the strong coordination needed
among teams (RAZZAK, 2016a); the increase in complexity in globally distributed pro-
jects(PAASIVAARA, 2017); and the difficulties that arise with the global distance and
the successful scaling of agile practices (DIKERT; PAASIVAARA; LASSENIUS, 2016b).

Large organizations usually have large projects carried out by large distributed
development teams, which require agile methods to be scaled. According to Leffingwell
(LEFFINGWELL, 2007), agile scaling involves many challenges, which include coordi-
nation among multiple agile teams, lack of initial architecture, lack of requirement analy-
sis, beyond all the challenges of regular global projects. Thus, several frameworks for
scaling agile software development have been suggested, such as Scaled Agile Fra-
mework (SAFe) (Leffingwell, Dean, 2020), Disciplined Agile Delivery (DAD) (AMBLER;
LINES, 2012), Large-Scale Scrum (LeSS) (LARMAN; VODDE, 2016), Nexus (BITT-
NER et al., 2017) and Scrum@Scale (Sutherland, Jeff and Brown, Alex, 2020). The



Capítulo 1. Introduction 16

State of Agile Survey (VersionOne, Inc., 2020) shows that 35% of respondents reported
the use of SAFe, 4% DAD, 4% LeSS, and 3% Nexus. However, documented experien-
ces regarding the use of these structures are still scarce, like (i) how they are used; (ii)
in what kind of circumstances they are most suitable; (iii) and which the success factors
and challenges of their use are.

Schwaber (Schwaber, Ken, 2013), one of the creators of Scrum, criticizes SAFe
in several ways for being too downward and inflexible, with the risk of suffocating the
teams under detailed routines and practices. In the meantime, benefits from adopting
SAFe to scale agile (PAASIVAARA, 2017) have been reported. SAFe is becoming po-
pular, being used at several companies which includes BMC Software, Mitchell Interna-
tional, Intel, Hewlett-Packard Enterprise, Cisco, Trade Station Technologies, Discount
Tire, John Deere, Valpak, Infogain, SEI (Leffingwell, Dean, 2020), among others.

Use and scale agile is particularly challenging in the global software develop-
ment context (PAASIVAARA; LASSENIUS, 2011). Although, the authors claim that
SAFe is used by large organizations that embrace global software development (Lef-
fingwell, Dean, 2020), more empirical research is needed to evaluate whether SAFe
practices are in line with agile practices in global software development (AGSD) litera-
ture (VALLON et al., 2017; DIKERT; PAASIVAARA; LASSENIUS, 2016b).

The challenging scenario faced by GSD projects from the use, adaptation, and
scaling of agile practices in global software development needs more research. Based
on it, this project aims to answer two research questions. First: how are agile practices
adopted in agile global software development teams? From those agile practices, we
can look for the second question: which practices reported in AGSD literature embrace
practices from SAFe when adopting scale agile development? In order to answer both
questions, this project consist of a Systematic Literature Review (SLR) (KITCHENHAM;
CHARTERS, 2007) that focused on finding research approaches from 2001 to 2019 that
highlighted the adaptation and scaling of agile across the globe. A total of 76 research
studies were considered for this SLR, from those 76 we could select 19 related to the
agile scale. Also, we have presented 48 agile practices identified through SLR, and from
those 48 practices, we could link 18 scaling agile practices that address how SAFe can
be used to scale AGSD.

This paper contributes to a collection of experiences reported in the literature on
how practices were applied to the different ASD in GSD projects to mitigate challenges
with distributed software engineering. Besides, this research contributes to the AGSD
by presenting a set of scaling agile practices that are used by global teams that embrace
SAFe practices. Both results originate from a systematic synthesis of recommendations
found in the related GSD.



Capítulo 1. Introduction 17

1.1 Goals

1.1.1 General Goal
Present a set of agile practices used and adapted by agile global software deve-

lopment that are reported in the literature. Also, present the scaling agile practices used
by those teams that embrace SAFe and the circumstances they are most suitable.

1.1.2 Specifics Goals

1. Develop a systematic literature review in agile global software development teams
to discover how they apply agile practices in globally distributed environments;

2. List the most used agile practices and describe how the practitioners applied it,
and who are responsible for each one;

3. Develop the mapping of the AGSD scaling agile practices used by the practitio-
ners that embrace SAFe practices, and also describe how to apply it and who are
responsible for each one.

1.2 Document Structure
Beyond this chapter 1, the document has four more chapters that compose this

research.

Chapter 2 presents the main subjects regarding this study, and also the related
works.

Chapter 3 shows the methodology used in this study, its stages and describes
each step executed during the systematic literature review and the mapping.

Chapter 4 presents the results gathered in the research. First, this chapter pre-
sents the agile practices extracted from the systematic literature review. Then, the sca-
ling agile practices that embrace SAFe practices are present.

Finally, chapter 5 presents the conclusion and main contributions of this work,
the limitations and threats of validity, and the possible future works.



18

2 Background

This section aims to present a brief theoretical foundation about the subjects
related to this project. Also, It intends to give to the reader an understanding of the
research areas.

2.1 Agile Software Development - ASD
Agile methods for software development were introduced around the beginning

of the new century. The increasing business need for fast creation of the internet and
mobile applications was a key driver for the introduction of these lightweight and nim-
ble development processes (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011). The
agile ideas, promised that higher customer satisfaction can be achieved by addressing
such uncertainty aspects and delivering working software frequently with shorter times-
cale (WAHYUDIN et al., 2008). The ideas of agile software development have gai-
ned acceptance in the mainstream software development community. Surveys pointed
out that agile teams are often more successful than traditional ones. According to the
agile manifesto (BECK et al., 2001), ASD emphasizes individuals and interactions over
processes and tools, working software over comprehensive documentation, customer
collaboration over contract negotiation, and responding to change over following a plan.

The most widely used methodologies based on agile principals are Scrum and
eXtreme Programming (XP) (Jalali; Wohlin, 2010). However, other methods such as Dy-
namic Systems Development Method, Adaptive Software Development, and the Crystal
Family stress upon short time goal and incremental delivery, dividing the entire projects
into sprints and every sprint governed by complete software development life cycle (Sri-
ram; Mathew, 2012; HOLE; MOE, 2008). The success of ASD depends significantly on
team interaction (DORAIRAJ; NOBLE; MALIK, 2012). Agile methods have enabled soft-
ware project teams to meet the challenges of an ever turbulent business environment
through enhanced flexibility and to emergent customer needs (MARUPING, 2010).

Kruchten (KRUCHTEN, 2013) defines agility as “the ability of an organization to
react to changes in its environment faster than the rate of those changes”. This definition
uses the ultimate goal of being agile for business, rather than defining agility by a set of
labelled practices (for example, you are agile when running XP (BECK, 2000), Scrum
(SCHWABER; BEEDLE, 2001) or Lean (POPPENDIECK; POPPENDIECK, 2007)) or
by a set of properties defined as opposed to another set - the agile manifesto (BECK et
al., 2001). This definition is not far from Conboy’s, which is addressed in his research
on the literature on agile process development (CONBOY et al., 2011).



Capítulo 2. Background 19

2.2 Global software development (GSD)
Global software development (GSD) is the name given to designate companies

that distribute their software development beyond their national boundaries (Marinho;
Noll; Beecham, 2018). Most of these companies use GSD on a large scale intending to
achieve expenses cuts, economic advantages, access to global talent, faster delivery,
and a 24-hour software development cycle which is possible due to different time zones
(RIZVI; BAGHERI; GASEVIC, 2015). However, while the adoption of GSD has increa-
sed in companies, having people in different locations can lead to many problems rela-
ted to communication, coordination, and control of the development process (Hossain;
Babar; Paik, 2009). Furthermore, several studies showed that 40 percent of global soft-
ware development projects have failed (Betz; Makio; Stephan, 2007) because of those
problems.

The major difference between global teams and co-located teams is the fact
that team members are not physically present in the same environment at the same
time. Although, both teams have the same goals that are to develop and deliver cons-
tant value to a project or product. However, the fact that team members are spread in
other countries leads to a lot of more complications than co-located teams faces, such
as asynchronous communication, lack of face-to-face communication, difficult in cons-
tructing a shared vision with the team, difficult in arranging meetings due to different
time zones, and different knowledge levels about a common language (Marinho; Noll;
Beecham, 2018).

2.3 Agile Global software development (AGSD)
The presence of agile practices in AGSD was seen since 2002 (JALALI; WOH-

LIN, 2012), one year after the launch of the Agile Manifesto (BECK et al., 2001). Further-
more, the use of agile practices is also related to the success of GSD projects (RAMESH
et al., 2006; RAZZAK et al., 2017; Hossain; Babar; Paik, 2009).

However, achieving success in a GSD project is a difficult task, which can only be
achieved through planning, organization, effective personnel, leadership, control, coor-
dination, and project management. These practices aim to mitigate the geographic, tem-
poral, and sociocultural distances (PAASIVAARA; LASSENIUS, 2010). To overcome
most of the complications faced by teams distributed globally, companies are adopting
agile methods for their distributed environment. However, by definition, agile practices
have been developed to help co-located teams (VALLON et al., 2017). Although many
studies demonstrate that agile methods can be useful to mitigate GSD problems (RA-
MESH et al., 2006; RAZZAK et al., 2017; Hossain; Babar; Paik, 2009). In this pers-
pective, agile methods appear as a viable methodology, since it is increasingly used in



Capítulo 2. Background 20

software development worldwide.

The practices adopted in distributed teams are adapted (VALLON et al., 2017)
so that they can deal with the challenges of the GSD. Face-to-face meetings and pair
programming, for example, are not possible to be implemented the way they are defi-
ned, as members are in different locations, as well as different time zones (RAJPAL,
2018). In this way, it is up to the teams to carefully select different asynchronous and
synchronous communication tools for the implementation of these practices. The adap-
tation and selection minimize the challenges caused by the GSD, as well as promoting
control and coordination in distributed teams (Szabó; Steghöfer, 2019). Among the agile
approaches, in the context of AGSD, the most used framework is Scrum followed by
Kanban (MARINHO et al., 2019).

2.4 Scaled Agile Framework®
In the road to ease the insertion of agile in globally distributed teams many

companies choose frameworks to scale agile practices, such as the Scaled Agile Fra-
mework (Leffingwell, Dean, 2020).

The SAFe (Leffingwell, Dean, 2020) was developed by Dean Leffingwell in 2012,
and it focuses on scale agile on large enterprises. The framework is a documented and
proven approach to scale agile practices, strategies and benefits in large enterprise
environments. It was developed to help companies to manage, control and organize
the development process in a context with many teams and many people (RAZZAK et
al., 2018; Paasivaara, 2017).

SAFe framework is a solid structure that covers all organization levels. Its four
core values alignment, built-in quality, transparency, and program execution (Leffingwell,
Dean, 2020) are associated with values and principles from Scrum (SCHWABER; BEE-
DLE, 2001), eXtreme programming (BECK, 2000), Lean Software Development (POP-
PENDIECK; POPPENDIECK, 2003) and the Agile Manifesto (BECK et al., 2001). Re-
cently, SAFe 5.0 was launched (Leffingwell, Dean, 2020). This new release aims to
cover all the enterprise levels and enable business agility. Furthermore, it combines
program and team level to form the Essential level, and brings focus on customer cen-
tricity, design thinking, and the continuous delivery pipeline.

The SAFe framework is now structured in three layers:

1. Portfolio: This is responsible for the funding and the strategic analysis of the
diverse initiatives present in the enterprise (Leffingwell, Dean, 2020).

2. Large Solution: It describes the roles, practices and guidance for enterprises that
build large and complex solutions, like critical systems (Leffingwell, Dean, 2020).



Capítulo 2. Background 21

3. Essential: this combines the past layers (program and team). It provides a star-
ting point for SAFe implementation and contains the practices, roles, events, and
artifacts necessary to deliver business solutions through ART that is a team of
agile teams (Leffingwell, Dean, 2020).

2.5 Related Work
One of the first secondary studies about the use of agile methods and practices

in GSD was conducted by Jalali and Wohlin (JALALI; WOHLIN, 2012). In their article,
we could saw that agile became more popular in a distributed environment from 2004
and forward. Also, from 63 studies selected, 53 reported success in their distributed
projects using agile practices. Besides, Jalali and Wohlin identified 25 agile practices in
distributed environments, although they not present how to apply those practices and
only considered the practices used in successful cases and not on failure reports. Mo-
reover, this study was conducted 10 years ago and compiled papers until 2009. Since
one decade has passed from this study, an update will be well received. Finally, the
authors reported that there was insufficient evidence, at the time, about scaling agile in
large distributed projects, which reinforces the need to research the present scenario.

Vallon et al. (VALLON et al., 2017) continued Jalali and Wohlin study (JALALI;
WOHLIN, 2012) following a similar study design, to analyze and compare the newer re-
sults with the past ones. The study aimed to synthesize the state of the art of successful
agile practices applied in GSD. The main contribution of this study was to update the
state of the art of agile practices in GSD covering publication from 2009 to 2016. The
authors selected 145 studies, the authors selected 145 studies, but only 89 were read
due to be successful cases of agile applicability in GSD. It was reported that Scrum is
the most used agile framework in a distributed environment. Besides, the study presents
21 practices reported in AGSD projects, and compare the frequency of each practice
to Jalali and Wohlin SLR study. However, similar to them, agile practices in GSD were
not described in a way of how to apply it in GSD, and also only successful cases were
present. Indeed, the study presents an update of the state of the art about agile practi-
ces in GSD projects. But, it still lets a gap opened, the evidence of scaling agile in large
distributed projects were present, although a description of scaling agile practices was
not reported. Finally, Vallon et al. (VALLON et al., 2017) reinforces the need to present
empirical evidence on how to apply agile practices in GSD and how to scale it.

Hossain et al. (Hossain; Babar; Paik, 2009) conducted a SLR on Scrum usage
in GSD. The study summarizes a set of challenges that arise from Scrum in GSD
and strategies to deal with them. It was only researched scrum practices related to
the project management area in primary studies from 2003 to 2009. The practices



Capítulo 2. Background 22

were categorized and information about how to apply them in distributed settings was
also reported. However, the authors only considered GSD studies that applied Scrum,
which may have caused a loss of information regarding agile practices of other agile
methods/frameworks in GSD projects. Besides it, from 2009 to now the research area
had received huge contributions from practitioners and researchers that could present
new and updated results. Finally, the study does not present ways to scale scrum prac-
tices in AGSD projects.

Rizvi et .al (RIZVI; BAGHERI; GASEVIC, 2015) conducted an SLR to identify:
what reasons lead companies to adopt AGSD, which are the most important risks and
threats in AGSD, and which agile methodologies lead AGSD project to success. The
paper selected 63 AGSD studies from 2007 to 2012 that applied practices from all agile
methods. The main goal of the article is to understand the reasons for adopting agile
in GSD and also synthesize the most present risks and threats of distributed projects,
and consequently the best solutions to mitigate them. Also, it aims to relate the agile
methodology used with risks faced by the projects and the mitigation strategies used.
Different from our goal, which aims to describe how the GSD teams applied agile prac-
tices, Rizvi studies do not describe how those practices were adapted in the studies.
Besides, it covered a small range of years of research studies. Finally, it does not consi-
der scaling agile practices to better deal with the risks and threats of large-scale AGSD
projects.

Focused on challenges in distributed settings, Alsahli et al. (ALSAHLI; KHAN;
ALYAHYA, 2017) presented an SLR study with a focus on GSD challenges and agile
practices based on Scrum used in GSD to mitigate those challenges. Studies from 2006
to 2016 were selected, and the authors reported how the GSD projects implemented
agile practices in GSD, to mitigate GSD challenges. However, in the hole process only
agile practices related to the mitigation of GSD challenges stated by the papers selected
were considered. Such a decision reduced the number of papers selected for 24, and
the emphasis given to Scrum reduced the set of agile practices applied in GSD settings.
Besides, the study discusses the use of agile practice in large-distributed projects but
does not go deep into scaling agile practices.

Another SLR study related to AGSD challenges, specifically for communication
challenges, was conducted by Alzoubi et al. (ALZOUBI; GILL; AL-ANI, 2015). The study
aimed to extract the communication challenges faced by AGSD teams and techniques
to deal with them. The study considered papers from 2006 to 2014, the communication
challenges were classified into six categories and both impact and techniques to face
them were present and described. Besides, scale agile were considered to deal with
distance issues. However, different from our study Alzoubi et al. (ALZOUBI; GILL; AL-
ANI, 2015) does not take into account agile practices in GSD settings and how to apply



Capítulo 2. Background 23

them.

According to Razavi and Ahmad (Razavi; Ahmad, 2014), the practitioners are
concerned about scale agile since 2005, and the top topics about large and distribu-
ted organizations of software development are scaling up agile development, transition
to large scale, agile implementation in a large organization, etc. However, Razavi and
Ahmad (Razavi; Ahmad, 2014) just describes the general topics about large and dis-
tributed organizations. It presents the needs and current gaps of the research topic,
although the study does not discuss how to adapt and scale agile practices in those
organizations.

With more focus on large-scale agile development, Dikert et al. (DIKERT; PA-
ASIVAARA; LASSENIUS, 2016a) conducted an SLR to review how large-scale agile
transformations occurred in the industry and also describes how agile methods and
lean software development were adopted at scale. The study focuses on identify chal-
lenges and success factors during the agile transformation of large-scale and distribu-
ted scenarios. The article points out that 90% of the selected studies for the SLR were
experience reports, which indicates that academic research is necessary on the topic.
However, since the focus was mostly given to the challenges and success factors of
scaling agile, specific agile practices and how to implement it in GSD settings were not
taken into account. Additionally, the paper does not relate the agile practices covered
in success factors to the SAFe practices. Although it points to the need to better unders-
tand how scaled frameworks are used, what are the challenges and benefits from them,
and how their practices are tailored. Such points indicate the need for further research
in large-scale agile distributed environments topic.

Based on the need for further research on large-scale agile at distributed settings.
Razzak et .al (RAZZAK et al., 2017) conducted a study to evaluate the adoption rate of
SAFe practices in a small to medium sized enterprises (SME). In the study, the authors
conducted surveys to better understand how SAFe can be implemented in a global
SME. Besides, the study gives focuses on the health evaluation of five areas from
the SAFe team level. The survey was used to get answers from team members about
product ownership, technical, program increment/release, team, and sprint health. The
health of those areas is based on the rate of practices adopted and reported by the
members. The study presents valuable information to the area, although it focuses on
the comparison of the practices adoption rate between two quarters. Not to mention, a
proper description of how the SAFe practices were applied is not taken into account.

Finally, it is possible to conclude that the knowledge about what agile practices
are being adopted by GSD teams can be truly helpful for practitioners and researchers.
Thus, it can improve the development process in distributed settings, since the lastest
SLRs’ were conducted a few years ago and almost none of them describes how to apply



Capítulo 2. Background 24

the agile practices in GSD settings. Furthermore, it is important to point which scaling
agile practices are being used by the AGSD projects, and which of them are adopting
SAFe practices. It is necessary to combine those practices with the proper descriptions
on how to apply agile and scale agile in GSD to lead companies to achieve success in
globally distributed projects and also reduce the existing gap on how to adopt agile in
large-scale global distributed environments.

2.6 Chapter Conclusion
This chapter contextualizes the reader by presenting the main research areas of

this study. Also, the section aims to provide a better understanding of the main subjects.

The contextualization sections initiate with a brief overview of agile software
development by presenting when it was launched and its main applicability. Further,
the concept of global software development was present together with its benefits and
main challenges.

Moreover, the combination of agile and GSD which generates AGSD was discus-
sed. AGSD represents the use and adaptation of agile practices in globally distributed
environments. In this section, the agile practices are presented as viable solutions to
mitigate the common GSD issues. Although, since agile practices were developed for
co-located teams, it is necessary to adapt them to AGSD contexts. Also, the SAFe fra-
mework was briefly described, showing the three layers that form the new SAFe 5.0,
and its four core values.

Finally, the reason for this study was discussed by showing the existing gaps
in the literature and the need for an updated SLR on the research topic. Also, it was
seen the need for proper description of what agile practices are being used in GSD
settings and how to apply and scale them in distributed settings and also in large-scale
distributed environments.



25

3 Methodology

This chapter describes the research methodology chosen for this study and
presents the two stages that this study was conducted through. In the first stage, the
authors executed a systematic literature review to gather agile and scaling agile practi-
ces that were being applied in GSD projects. Later, the found practices were described,
and in the second stage, the authors linked the scaling agile practices from the reviewed
studies to the practices present in SAFe (Leffingwell, Dean, 2020).

For a better understanding of the research steps of this work, figure 1 is going
to show its process and all the phases of this research.

3.1 Systematic Literature Review
In this study, a systematic review approach was adopted to examine the rele-

vant literature. Our goal was to select a sufficient collection of studies to enable the
identification of recurring themes.

Established systematic review guidelines (KITCHENHAM; CHARTERS, 2007)
recommend that a reviewer carry out the following steps: (i) identify the need for a
systematic literature review; (ii) formulate review research question(s); (iii) carry out
a search for relevant studies. (iv) assess and record the quality of included studies;
(v) classify the data needed to answer the research question(s); (vi) extract data from
each included study; (vii) summarise and synthesize study results (meta-analysis); (viii)
interpret results to determine their applicability; (ix) write up the study results as a report.

The SLR sought to answer the following research questions: “How are agile
practices adopted in agile global software development teams?” and “Which practices
reported in AGSD literature embrace practices from SAFe when adopting scale agile
development?”. The Boolean search string used to ensure that a wide variety of papers
would be captured is present in table 1:

Main search string

(“Agile” OR “scrum” OR “extreme programming” OR “pair programming” OR “hybrid”
OR “lean development” OR “lean software development” OR “SAFe” OR “Scaled Agile
Framework”) AND (“global software engineering” OR “global software development”
OR “distributed software engineering” OR “distributed software development” OR “GSE”
OR “GSD” OR “distributed team” OR “global team” OR “dispersed team” OR “spread
team” OR “virtual team” OR “offshore” OR “outsource”)

Tabela 1 – Research string.



Capítulo 3. Methodology 26

Figura
1

–
R

esearch
m

ethod
diagram

.



Capítulo 3. Methodology 27

We used this string to search the metadata relating to journals and conference
proceedings in IEEEXplore, ACM Digital Library, SpringerLink, Scopus, and Wiley bi-
bliographic databases.

The SLR was conducted by four researchers, myself, my advisor, and two other
students from the research group, FREVO. During the SLR’s phases, each researcher
had a specific function, the research protocol was developed by all researchers and the
search string was executed in the bibliography databases by myself and the advisor.
The search results were exported as BibTeX files, then it was organized into the StArt
software (ZAMBONI et al., 2010), an open-source support tool for SLR research, and
then all the articles were evaluated until the full read phase.

Into the selection phase, all the researchers, except the advisor, read the title
and abstract of all papers, and then the result dataset of each researcher was discus-
sed. Whether an article was approved by two or all the researchers it would be included
for the next phase, although, if a paper received only one vote for approval, such paper
would be discussed by all the researchers until they reach a consensus. At phase 1, the
330 papers were split into three groups, and each researcher, except the advisor, was
responsible for each group. During this moment each paper was downloaded and eva-
luated by the researchers, and after the evaluation, the selected ones were evaluated
following the same rules of the selection phase.

In phase 2, the 76 articles were split into three groups again, and each resear-
cher, except the advisor, read the full papers of their group. The data were extracted
by the researchers in the form of quotes, the dataset of quotes was evaluated by all the
researchers and any disagreements were discussed until a consensus reached. Finally,
the third phase was conducted by myself who extracted 19 articles from the 76 papers
from the past phase that were related to large-scale agile development projects. The
duration of each phase is present in Table 2.

Phases Period
Research Protocol September, 2019
String Execution October, 2019
Selection Phase October, 2019 to January, 2020

Phase 1 February, 2020 to March, 2020
Phase 2 April, 2020 to May, 2020
Phase 3 June, 2020 to July, 2020

Tabela 2 – Research periods.



Capítulo 3. Methodology 28

3.1.1 Document selection
The search produced 2914 references (IEEE = 737; ACM = 155; Springer= 322;

Scopus = 847; Wiley = 853; Duplicates = 337). The idealized selection process had
two components: (phase 1) an initial selection of research results that could reasonably
satisfy the selection criteria (outlined next) based on a reading of the articles’ titles and
abstracts; followed by (phase 2) a final selection against these criteria from the initially
selected list of papers based on a reading of their introductions and conclusions.

3.1.1.1 Inclusion/Exclusion criteria

The following criteria guided the selection of papers that helped us address the
research questions.

We included: (i) complete, peer-reviewed, published articles; (ii) Papers directly
related to the research questions; (iii) Papers addresses agile practices in GSD and
that the study is available via the university library services accessible to the authors
during the time of the search.

We excluded: (i) texts not published in English; (ii) Technical content, without pro-
ven scientific relevance, eg: editorials, tutorials, key-note speech, white papers, thesis,
dissertations, technical reports, books; (iii) Short papers (<=4 pages); and (iv) articles
that are not clearly related to the research questions.

Before accepting a paper into the final set for review, we checked to ensure that
there was no replication. For example, if a given study was published in two different
journals with a different order of primary authors, only one study would be included in
the review; this would usually be the most comprehensive or recent study. Besides, we
checked to ensure that there was no duplication. For example, in the same paper listed
in more than one database, only one study would be included in the review.

With these criteria, we identified 337 duplicate articles and no replicates. After
excluding duplicate results from the dataset, we identified articles for inclusion in the
initial selection (phase 1). Out of these articles, 330 were passed on to phase 2, in
which 252 were eliminated and 76 were finally passed on to the data extraction and
data synthesis phase (See Table 3).

The following table shows the number of studies extracted from each engine th-
rough the search string, and how many were accepted in each phase of the extractions.



Capítulo 3. Methodology 29

Engine Selection Phase 1 Phase 2

ACM 155 42 21
Scopus 847 135 12
Wiley 853 9 0

Springer 322 30 24
IEEE 737 114 19

Total 2914 330 76

Tabela 3 – Papers by engine.

Those 76 articles helped to find the necessary data to answer both research
questions, although mainly the first one. However, the final set of articles was also
classified in a third phase to identify which papers were related to scaling agile (See
table 4).

Engine Selection Phase 1 Phase 2 Phase 3
ACM 155 42 21 3
Scopus 847 135 12 1
Wiley 853 9 0 0
Springer 322 30 24 10
IEEE 737 114 19 5
Total 2914 330 76 19

Tabela 4 – Papers by engine phase 3.

3.1.2 Study Quality
The quality assessment criteria adopted for our study are based on principles

and good practices established for driving empirical research in software engineering
(DYBA; DINGSOYR; HANSSEN, 2007), are briefly summarised as follows. We answe-
red the following questions using Yes, No, Partially: (i) Is there a clear definition of the
study objectives?; (ii) Is there a clear definition of the justifications of the study?; (iii) Is
there a theoretical background about the topics of the study? (iv) Is there a clear de-
finition of the research question (RQ) and/or the hypothesis of the study?; (v) Is there
an adequate description of the context in which the research was carried out?; (vi) Are
used and described appropriate data collection methods?; (vii) Is there an adequate
description of the sample used and the methods for identifying and recruiting the sam-
ple?; (viii) Is there an adequate description of the methods used to analyze data and
appropriate methods for ensuring the data analysis was grounded in the data?; (ix) Is
provided by the study clearly answer or justification about RQ/hypothesis?; (x) Is pro-
vided by the study clearly stated findings with credible results? (xi) Is provided by the
study justified conclusions?; and (xii) Is provided by the study discussion about validity
threats?



Capítulo 3. Methodology 30

3.1.3 Data Extraction
We examined each selected publication to extract the following elements: (i)

study aim or research question, (ii) other results relevant to the study, and (iii) potential
themes emerging from the study’s conclusions.

We synthesized the data by first identifying each paper’s agile practices as to
how to apply it to the GSD team. As we gave each occurrence the same weight, the
frequencies presented simply reflect how many papers mention a given practice; fre-
quencies, therefore, reflect the prevalence of a theme and not its potential importance.

We classified all included papers into one of the following research types facet
derived from Wieringa et al. (WIERINGA et al., 2006).

• Opinion:Do not describe new research result. Those studies contain the author’s
opinion statements not grounded in empirical data, related work, or research
methods;

• Solution:Proposal solution to a problem, it can be an improvement of a technique
or the proposal of a new technique. The proposed solution must be argued, and
when possible, tested, and validated;

• Philosophical: Proposes a new way of thinking/looking to things. It can be a new
conceptual framework, a taxonomy, and a secondary study, us has RSL or SMS;

• Evaluation: Evaluation of a problem in practice, or evaluations of a technique
implemented in practice, e.g case studies;

• Experience: It describes personal experiences. It can be personal experiences
from the authors, or industrial experience reports.

Also, all the reviewed studies were classified through contribution type facets
derived from Petersen et al. (PETERSEN et al., 2008).

• Model: Representation of an observed reality through concepts;

• Framework: A set of practices, methods, and recommendations to be apply rela-
ted to GSD;

• Guideline: A set of advice, best practices, and success factors grounded in em-
pirical evidence;

• Lessons learned: A set of outcomes from case studies findings and results;

• Advice: A set of recommendations usually from the author’s opinion, and not
grounded in empirical evidence.



Capítulo 3. Methodology 31

The data extracted using the web form was copied to a spreadsheet for data
synthesis. Additionally, data synthesis is divided into quantitative and qualitative synthe-
sis.

3.2 Mapping
The first phase for the mapping of scaling AGSD practices and SAFe practices

was to access the SAFe website home page (https://www.scaledagileframework.com/ ),
which contains the big picture of the framework and a diagram map of the structure.
Then follow each reference link from the big picture of SAFe that leads to other pages
that describe the element which can be a highlight, a role, an event, or an artifact.
Accessing each reference link it was possible to read it, and then identify and extract
practices from SAFe. After the extraction of those practices, it has been organized into
a hierarchy mirroring the organization of papers.

Since a comprehensive catalog of SAFe approach practices was build, the se-
cond phase consisted of a review made by the advisor in the content, and after it, some
adjustments were made. By the end of the content review, the catalog of SAFe prac-
tice was finished and the third phase started by each SAFe practice being compared
to the set of AGSD practices extracted during the systematic literature review. Whether
a SAFe practice could be considered to contribute to the implementation of an AGSD
practice, then that SAFe practice was linked to it. By the time the practices were linked,
the fourth phase consisted of a last review by the advisor, and the last adjustments
pointed by him were made.

Finally, through the mapping, we could get a comparison among scaling AGSD
practices and SAFe practices, to combine them and define which scaling agile practices
used by AGSD projects embrace SAFe practices.

3.3 Chapter conclusion
This chapter describes the research methods used for the execution of this re-

search. The research methodology consisted of two stages (See figure 1), each stage
with their own research question. Each stage was described with what was done.



32

4 Research Development

This chapter presents the results of systematic literature reviews. It includes the
extracted agile practices used ing GSD, then the scaling agile practices used by GSD
teams linked with SAFe practices (Leffingwell, Dean, 2020).

Primarily, we will discuss and describe the 48 agile global software development
practices extracted from the 76 studies from the period of January 2001 to December
2019 that answer the question “how are agile practices adopted in agile global software
development teams?”. The overview of the primary studies is present in section 4.1 and
qualitative analysis in section 4.2.

Moreover, we describe the 18 scaling AGSD practices linked with many SAFe
(Leffingwell, Dean, 2020) practices that answer the question “Which practices reported
in AGSD literature embrace practices from SAFe when adopting scale agile develop-
ment?”.

4.1 Overview of the primary studies
The distribution of research methods types is shown in Figure 2. It can be seen

that The majority of the papers used a qualitative approach in their studies (54 papers),
followed by a mixed approach (18 papers), and a quantitative method (3 papers). We
could not define the type of research method of only one paper, because of it, we got
an unclear one.



Capítulo 4. Research Development 33

Figura 2 – Research methods types distribution.

The mapping of paper types in Figure 3 shows the research type facets of all
studies from the SLR throughout 2004-2019. The research type facets are derived Wi-
eringa et al. (WIERINGA et al., 2006), and it aims to classify the papers into classes
regarding the research types. It can be seen that at the beginning of the 2000s no stu-
dies were found about agile practices in GSD. However, from 2004 to 2011, the number
of studies started to emerge and rise, and most of then were from experiences, evalu-
ations, and solutions. Later, in the period of 2012-2019, we can see the appearance
of more studies, specifically philosophical studies (13 papers) that indicate a certain
maturity of the research field. Although, experience papers (17 studies) continued to
be reported what shows that the research field continues to receive attention from the
academy who are regularly researching the area. Furthermore, the most common pu-
blication types throughout 2004-2019 were evaluation papers(25 papers), experience
reports (24 papers), and philosophical studies (16 papers).



Capítulo 4. Research Development 34

Figura 3 – Research type facets over time.

The distribution of contribution type facets of the reviewed studies derived from
Petersen et al. (PETERSEN et al., 2008) and is presented in Figure 4. Those facets
classifies the studies regarding their contribution to the literature. As we can see the
most common contribution types were guidelines (28 papers), then lessons learned (24
papers), followed by advice (12 papers), frameworks (8) papers, and model (4 papers).

Figura 4 – Contribution type facets over time.

The distribution of methods per year is shown in figure 5. Beforehand, there
were articles that used more than one methodology, so the number of methods does
not correspond to the number of articles. It can be seen that most articles used the case
study methodology (42 articles), where at least 1 article was found, with the exception
of the year 2016, followed by interviews (26 articles). The least used methodologies
were multiple-Case Study and action Research, with 1 article each in 2010 and 2016
respectively.



Capítulo 4. Research Development 35

Figura 5 – Distribution of research methods by year.

Each study was assessed independently, according to seven possible quality
criteria (see Section 3.1.2). The papers were evaluated on the following scales: <20%,
poor; 20%-40%, fair; 40%-60%, average; 60%-80%, good; and >80%, excellent; these
are listed in Table 5.

Poor (<20%) Fair (20%-40%) Average (40%-60%) Good (60%-80%) Excellent (>80%)

Number of Studies 0 1 5 13 57
Percentage of Papers 0 1,3% 6,5% 17,1% 75%

Tabela 5 – Quality assessment.

4.2 RQ: How are agile practices adopted in agile global software
development teams?
To help implement our set of identified practices, we will describe each practice,

in the next subsections, based on the review papers. The description aims at the goal of
the practice, who should be applying the practice, and how the practice can be adopted
in a GSD environment.



Capítulo 4. Research Development 36

4.2.1 Daily meeting (36)
Daily meetings are an excellent way for distributed projects to disseminate in-

formation about the status of the project across team members. In a distributed envi-
ronment is usually held through videoconferences, telephones, etc (Robinson, 2019;
Khmelevsky; Li; Madnick, 2017; HUBER; DIBBERN, 2014). Goal: it aims to dissemi-
nate knowledge in the team about what was done in the previous day, identify impedi-
ments, and inform the work to be carried out on the day that begins. Who: teams and
scrum master. How: when it comes to GSD, the studies mentioned that the meetings
were held by telephone, video conference, webcam, emails, internet chats among other
means of communication (Robinson, 2019; RAZZAK et al., 2018; LOUS et al., 2018b;
Szabó; Steghöfer, 2019; LOUS; KUHRMANN; TELL, 2017; HOSSAIN; BANNERMAN;
JEFFERY, 2011b; LOUS et al., 2018a; S.; KUMAR; MANI, 2018; LAL; CLEAR, 2018;
BJØRN; SØDERBERG; KRISHNA, 2019; VALLON et al., 2017; Khmelevsky; Li; Mad-
nick, 2017; KAUSAR; AL-YASIRI, 2017; RAZZAK et al., 2017; MODI; ABBOTT; COUN-
SELL, 2017; Gupta; Manikreddy, 2015; MOE et al., 2015; RIZVI; BAGHERI; GASE-
VIC, 2015; ESTáCIO; PRIKLADNICKI, 2014; HUBER; DIBBERN, 2014; Sundarara-
jan; Bhasi; Vijayaraghavan, 2014; VALLON et al., 2013; RALPH; SHPORTUN, 2013;
Sriram; Mathew, 2012; DORAIRAJ; NOBLE; MALIK, 2012; HOSSAIN; BANNERMAN;
JEFFERY, 2011a; HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; PAASIVAARA; LAS-
SENIUS, 2010; HOSSAIN; BABAR; VERNER, 2009a; PAASIVAARA; DURASIEWICZ;
LASSENIUS, 2008; HOLE; MOE, 2008; KUSSMAUL; JACK; SPONSLER, 2004; BASS,
2015; LEE; YONG, 2009; Jalali; Wohlin, 2010; Hossain; Babar; Paik, 2009).

4.2.2 Communication practices (34)
Aim to replace the common face-to-face communication of a co-located agile

team, the distributed teams usually use synchronous communication through videocon-
ference, telephones, and web conferences (PAASIVAARA; LASSENIUS, 2010; HOS-
SAIN; BABAR; VERNER, 2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008).
However, asynchronous communication is also very important in globally distributed te-
ams due to each team is in a different timezone. To enhance asynchronous communica-
tion in distributed projects the studies suggested the use of email, chat tools, wikis (KAU-
SAR; AL-YASIRI, 2017; Hamid, 2013; HOSSAIN; BANNERMAN; JEFFERY, 2011a).
Goal: it intends to reduce misunderstandings, enhance the bonds of the distributed te-
ams, and share common information among all sites. Who: teams. How: some GSD
projects used the practice of “multiple communication modes” that combines a variety
of synchronous and asynchronous approaches to establish a communication strategy
in the project(LOUS; KUHRMANN; TELL, 2017; HILLEGERSBERG; LIGTENBERG;
AYDIN, 2011; HOSSAIN; BABAR; VERNER, 2009b). Furthermore, some papers sug-



Capítulo 4. Research Development 37

gest that distributed teams should synchronize work hours to achieve good communica-
tion levels (Robinson, 2019; RAZZAK et al., 2018; Szabó; Steghöfer, 2019; HOSSAIN;
BANNERMAN; JEFFERY, 2011b; RAMESH et al., 2006; RICHTER; RAITH; WEBER,
2016; HOSSAIN, 2019; VALLON et al., 2017; KAUSAR; AL-YASIRI, 2017; LAUREN,
2015; BANIJAMALI et al., 2017; Gupta; Manikreddy, 2015; MOE et al., 2015; RIZVI;
BAGHERI; GASEVIC, 2015; HUBER; DIBBERN, 2014; Razavi; Ahmad, 2014; Hamid,
2013; DORAIRAJ; NOBLE; MALIK, 2012; DUMITRIU; OPREA; MESNITA, 2011; HOS-
SAIN; BANNERMAN; JEFFERY, 2011a; PAASIVAARA; LASSENIUS, 2010; MARU-
PING, 2010; AVRITZER; BRONSARD; MATOS, 2010; HOSSAIN; BABAR; VERNER,
2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; HOLE; MOE, 2008; CHO,
2007; KUSSMAUL; JACK; SPONSLER, 2004; BASS, 2015; Hossain; Babar; Paik, 2009;
Nuevo; Piattini; Pino, 2011).

4.2.3 Planning (24)
In this practice, the distributed teams discuss the requirements, tasks, and the

necessary work that needs to be done to achieve a desired goal in the project. Planning
meetings are mostly conducted frequently to refine and discuss information regarding
tasks and customer expectation (Sundararajan; Bhasi; Vijayaraghavan, 2014; VALLON
et al., 2013; PAASIVAARA; LASSENIUS, 2010). Goal: in the planning meetings, deve-
lopers have the opportunity to ask questions about proposed tasks, reduce misunders-
tandings, and align the scope according to customer expectations and feedback. Who:
dev teams, product owner, scrum master, stakeholders. How: global software planning
is applied with tools such as Skype, phone calls and videoconferences, e-mails, and
visits (Szabó; Steghöfer, 2019; HOSSAIN; BABAR; VERNER, 2009a; PAASIVAARA;
DURASIEWICZ; LASSENIUS, 2008). Furthermore, according to Rizvi et al. (RIZVI;
BAGHERI; GASEVIC, 2015), those plans take place in short cycles, to reduce risks
and increase feedback from customers and other teams (LOUS; KUHRMANN; TELL,
2017; HOSSAIN; BANNERMAN; JEFFERY, 2011b; LAL; CLEAR, 2018; VALLON et al.,
2017; Khmelevsky; Li; Madnick, 2017; KAUSAR; AL-YASIRI, 2017; BANIJAMALI et al.,
2017; RAZZAK et al., 2017; MOE et al., 2015; Britto; Mendes; Börstler, 2015; TRIPATHI
et al., 2015; BRITTO; USMAN; MENDES, 2014; Sundararajan; Bhasi; Vijayaraghavan,
2014; VALLON et al., 2013; TANNER; CHIGONA, 2012; HOSSAIN; BANNERMAN;
JEFFERY, 2011a; PAASIVAARA; LASSENIUS, 2010; AVRITZER; BRONSARD; MA-
TOS, 2010; LEE; YONG, 2009; Jalali; Wohlin, 2010).

4.2.4 Scrum of scrums - SoS (20)
Aims through the scrum master of each team, to hold meetings to share informa-

tion and keep all members up to date on product events (Gupta; Manikreddy, 2015; VAL-



Capítulo 4. Research Development 38

LON et al., 2013; DUMITRIU; OPREA; MESNITA, 2011).Goal: the purpose of the scrum
of scrums is to keep teams up to date on the events of the project. Who: scrum masters
and teams. How: in the context of GSD, to apply SoS, teams are formed based on their
location, with a representative member (Scrum master) on each team to ensure commu-
nication among teams (KAUSAR; AL-YASIRI, 2017; Hossain; Babar; Paik, 2009). Ac-
cording to Passivaara and Lassenius, it was observed that SoS meetings can be similar
to the scrum meetings with the need to organize the meetings virtually (PAASIVAARA;
LASSENIUS, 2010). Also, at the scrum of scrums meeting, project progress, resource
decisions, prioritization, testing approaches, shared coding infrastructure, and people
management are discussed (LOUS; KUHRMANN; TELL, 2017; HOSSAIN; BANNER-
MAN; JEFFERY, 2011b; S.; KUMAR; MANI, 2018; GUPTA; JAIN; SINGH, 2018; VAL-
LON et al., 2017; Khmelevsky; Li; Madnick, 2017; Gupta; Manikreddy, 2015; RIZVI;
BAGHERI; GASEVIC, 2015; Sundararajan; Bhasi; Vijayaraghavan, 2014; VALLON et
al., 2013; LI; MäDCHE, 2013; DUMITRIU; OPREA; MESNITA, 2011; HOSSAIN; BAN-
NERMAN; JEFFERY, 2011a; AVRITZER; BRONSARD; MATOS, 2010; PAASIVAARA;
DURASIEWICZ; LASSENIUS, 2008; LEE; YONG, 2009; DINGSøYR et al., 2017; Nu-
evo; Piattini; Pino, 2011).

4.2.5 Visits among sites (20)
Regular Visits among sites are a practice where team members come together

to reduce the sociocultural distance, improve communication, and achieve better Col-
laboration among teams (DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA; LASSE-
NIUS, 2010; Hossain; Babar; Paik, 2009). Goal: reduce sociocultural distance, improve
communication, and achieve better collaboration among teams Who: teams and sta-
keholders. How: when affordable, the visits among sites are dedicated to face-to-face
meetings (Gupta; Manikreddy, 2015). These meetings usually take place with all team
members or representatives, so that they can discuss issues about the project, reduce
the sociocultural distance, improve team collaboration and communication. These vi-
sits help to build relationships and trust (RAJPAL, 2018; Hossain; Babar; Paik, 2009;
Nuevo; Piattini; Pino, 2011), and, according to Szabó and Steghofer, (Szabó; Steghö-
fer, 2019) they make it possible to identify and solve problems collaboratively (LOUS;
KUHRMANN; TELL, 2017; Paasivaara, 2017; HOSSAIN, 2019; VALLON et al., 2017;
MOE et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; VALLON et al., 2013; RALPH;
SHPORTUN, 2013; DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA; LASSENIUS,
2010; AVRITZER; BRONSARD; MATOS, 2010; HOSSAIN; BABAR; VERNER, 2009b;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; HOLE; MOE, 2008; LEE; YONG,
2009).



Capítulo 4. Research Development 39

4.2.6 Retrospective meeting (19)
It is an ”improvement“ meeting held to find ways and means of identifying possi-

ble pitfalls, past mistakes, and looking for new ways to avoid those mistakes (Sundara-
rajan; Bhasi; Vijayaraghavan, 2014). Goal: a retrospective meeting is held to check and
improve the project’s execution processes. Who: dev teams and scrum master. How: in
GSD, retrospective meetings are held through telephones, videoconferences, webcam,
and other communication tools (Robinson, 2019; HOSSAIN; BANNERMAN; JEFFERY,
2011b; MOE et al., 2015). Some of the retrospectives were carried out using synchro-
nous communication tools (Szabó; Steghöfer, 2019), while others, as mentioned in the
studies (KAUSAR; AL-YASIRI, 2017; Hossain; Babar; Paik, 2009), were carried out
asynchronously, through the publication of comments and Wiki results and information
shared by email (LOUS; KUHRMANN; TELL, 2017; S.; KUMAR; MANI, 2018; VALLON
et al., 2017; TRIPATHI et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; Sundararajan;
Bhasi; Vijayaraghavan, 2014; DORAIRAJ; NOBLE; MALIK, 2012; HOSSAIN; BANNER-
MAN; JEFFERY, 2011a; PAASIVAARA; LASSENIUS, 2010; HOSSAIN; BABAR; VER-
NER, 2009a; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; DINGSøYR et al.,
2017; Jalali; Wohlin, 2010).

4.2.7 Sprint (19)
Many projects from reviewed studies related the use of sprints (RIZVI; BAGHERI;

GASEVIC, 2015; RALPH; SHPORTUN, 2013; AVRITZER; BRONSARD; MATOS, 2010),
most of them respecting a duration from one to four weeks, but one study reported the
conduction of a sprint with six weeks for a period (HILLEGERSBERG; LIGTENBERG;
AYDIN, 2011). Goal: develop pre-defined requirements along a time-boxed period, not
accepting changes during the period and producing a software increment by the end.
Who: teams. How: the sprint is implemented through the application of more agile prac-
tices, such as sprint planning, sprint review, sprint retrospective (HOSSAIN; BANNER-
MAN; JEFFERY, 2011a). Also, some papers suggest to keep sized short sprints cycles
to constantly delivery value to the customer (Szabó; Steghöfer, 2019; LOUS; KUHR-
MANN; TELL, 2017; HOSSAIN; BANNERMAN; JEFFERY, 2011b; LAL; CLEAR, 2018;
ALSAQAF; DANEVA; WIERINGA, 2017; VALLON et al., 2017; Gupta; Manikreddy,
2015; RIZVI; BAGHERI; GASEVIC, 2015; ESTáCIO; PRIKLADNICKI, 2014; RALPH;
SHPORTUN, 2013; Sriram; Mathew, 2012; RAMESH; MOHAN; CAO, 2012; HILLE-
GERSBERG; LIGTENBERG; AYDIN, 2011; PAASIVAARA; LASSENIUS, 2010; AVRIT-
ZER; BRONSARD; MATOS, 2010; PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008;
HOLE; MOE, 2008; Jalali; Wohlin, 2010).



Capítulo 4. Research Development 40

4.2.8 Product backlog (18)
The product backlog practice is popular in distributed software development, and

it was seen in many articles (VALLON et al., 2017; Gupta; Manikreddy, 2015; MOE et al.,
2015). It was observed that some distributed projects used electronic tools to manage
product backlog (Szabó; Steghöfer, 2019; KAUSAR; AL-YASIRI, 2017; PAASIVAARA;
LASSENIUS, 2010). Goal: aims to concentrate all the business and architectural featu-
res that need to be implemented by all distributed teams. Who: product owner and team
lead. How: according to Hossain et al. (HOSSAIN; BANNERMAN; JEFFERY, 2011b)
study, in one of the studied projects, the product backlog was refined and incremen-
ted biweekly with the customer. Lee and Yong (LEE; YONG, 2009) showed that the
studied distributed teams had their own backlogs, and there were separated according
to local and regional customizations (Szabó; Steghöfer, 2019; LOUS; KUHRMANN;
TELL, 2017; GUPTA; JAIN; SINGH, 2018; LAL; CLEAR, 2018; RICHTER; RAITH; WE-
BER, 2016; ALSAQAF; DANEVA; WIERINGA, 2017; VALLON et al., 2017; Khmelevsky;
Li; Madnick, 2017; KAUSAR; AL-YASIRI, 2017; Gupta; Manikreddy, 2015; MOE et al.,
2015; RALPH; SHPORTUN, 2013; LI; MäDCHE, 2013; HILLEGERSBERG; LIGTEN-
BERG; AYDIN, 2011; PAASIVAARA; LASSENIUS, 2010; Nuevo; Piattini; Pino, 2011).

4.2.9 Backlog management (16)
Backlog management is the technique used by agile teams to record, track, and

prioritize what needs to be implemented in the project so that the goals are met (PA-
ASIVAARA; DURASIEWICZ; LASSENIUS, 2008; AVRITZER; BRONSARD; MATOS,
2010). Goal: ensure the organization of the tasks to be performed. Who: product ow-
ner and teams. How: it is important to ensure that team members always have a clear
view of the product (MOE et al., 2015; LEE; YONG, 2009). In this way, the developers,
according to Paasivaara, Durasiewicz, and Lassenius (PAASIVAARA; DURASIEWICZ;
LASSENIUS, 2008) used a support tool called Jira 1 to manage the backlog and make
it available to anyone in the distributed teams (S.; KUMAR; MANI, 2018; LAL; CLEAR,
2018; RAMESH et al., 2006; Hamid, 2013; VALLON et al., 2013; LI; MäDCHE, 2013;
HOSSAIN; BANNERMAN; JEFFERY, 2011a; HILLEGERSBERG; LIGTENBERG; AY-
DIN, 2011; MARUPING, 2010; AVRITZER; BRONSARD; MATOS, 2010; HOLE; MOE,
2008; DINGSøYR et al., 2017; Jalali; Wohlin, 2010).

4.2.10 User stories (15)
The user stories are used in distributed projects for the same purpose as co-

located ones. It describes, in a detailed way, the needs of the project according to
1 www.atlassian.com/software/jira



Capítulo 4. Research Development 41

the user’s vision, thus representing a system requirement (MODI; ABBOTT; COUN-
SELL, 2017; TRIPATHI et al., 2015; HILLEGERSBERG; LIGTENBERG; AYDIN, 2011).
Goal: guarantee an understanding of functional and non-functional requirements by
providing the vision of the end-user to team members. Who: product owner and teams.
How: according to Alsaqaf, Daneva, and Wieringa (ALSAQAF; DANEVA; WIERINGA,
2017) in the global context, user stories can be distributed according to the nature
of the story and the skills available in the distributed teams. Other studies registered
user stories in web platforms, such as Jira, make them available among all team mem-
bers and modified as necessities arose, thus ensuring coordinated work among deve-
lopers (Szabó; Steghöfer, 2019; LOUS; KUHRMANN; TELL, 2017; S.; KUMAR; MANI,
2018; LAL; CLEAR, 2018; RAMESH et al., 2006; VALLON et al., 2017; MODI; ABBOTT;
COUNSELL, 2017; TRIPATHI et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; Sunda-
rarajan; Bhasi; Vijayaraghavan, 2014; TANNER; CHIGONA, 2012; HILLEGERSBERG;
LIGTENBERG; AYDIN, 2011; Jalali; Wohlin, 2010; Hossain; Babar; Paik, 2009).

4.2.11 Pair programming (15)
The practice of pair programming was quite popular among the reviewed stu-

dies, most of the projects from those studies applied pair programming between team
members of the same site (Szabó; Steghöfer, 2019; SCHENK; PRECHELT; SALIN-
GER, 2014; HOSSAIN, 2019). Although, some studies applied distributed pair program-
ming (DPP) between team members of different sites through screen sharing and video
conference (LOUS et al., 2018a; ESTáCIO; PRIKLADNICKI, 2014). Goal: develop the
source code of a project through two developers working on the same computer, aiming
to improve the quality of the code and share knowledge. Who: dev teams. How: accor-
ding to some studies (SCHENK; PRECHELT; SALINGER, 2014; RAZZAK et al., 2017;
ESTáCIO; PRIKLADNICKI, 2014) is important to select proper communication tools
which allow audio and video sharing for the application of distributed pair programming
(DPP) (Szabó; Steghöfer, 2019; LOUS et al., 2018a; LAL; CLEAR, 2018; HOSSAIN,
2019; VALLON et al., 2017; KAUSAR; AL-YASIRI, 2017; Gupta; Manikreddy, 2015;
TRIPATHI et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; MARUPING, 2010; AVRIT-
ZER; BRONSARD; MATOS, 2010; Jalali; Wohlin, 2010).

4.2.12 Sprint review (14)
Sprint review was one of the most popular practices found in the review (LOUS;

KUHRMANN; TELL, 2017; HOSSAIN; BANNERMAN; JEFFERY, 2011b; VALLON et
al., 2013). The review meeting in distributed teams is commonly conducted together
with a system demo (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; VALLON et
al., 2013). Goal: present the software increment to the product owner, and the pro-



Capítulo 4. Research Development 42

ject stakeholders aiming to receive feedback about the features developed. Who: te-
ams, product owner, scrum master, and stakeholders. How: the sprint review meetings
are usually conducted via video or phone conferences (KAUSAR; AL-YASIRI, 2017).
However, the reviewed studies differ a lot of whom should be present in the review
meeting, suggesting only the presence of the PO (Szabó; Steghöfer, 2019), or the pre-
sence of scrum master, PO and project stakeholders (LOUS; KUHRMANN; TELL, 2017;
HOSSAIN; BANNERMAN; JEFFERY, 2011b; VALLON et al., 2017; Khmelevsky; Li;
Madnick, 2017; MOE et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; VALLON et al.,
2013; TANNER; CHIGONA, 2012; HOSSAIN; BANNERMAN; JEFFERY, 2011a; HIL-
LEGERSBERG; LIGTENBERG; AYDIN, 2011; HOSSAIN; BABAR; VERNER, 2009a;
LEE; YONG, 2009; Jalali; Wohlin, 2010).

4.2.13 Self-management (13)
Agile distributed projects adopted a self-management approach for their environ-

ment. Moving the main management activities and work-related activities to the team
members, effectively eliminating the traditional management structure (GUPTA; JAIN;
SINGH, 2018; RAZZAK et al., 2017; MODI; ABBOTT; COUNSELL, 2017). Goal: align
priorities, plans, keep the team more focused around work in a responsible way. Who:
teams.How: several papers (RAMESH et al., 2006; RIZVI; BAGHERI; GASEVIC, 2015;
Sundararajan; Bhasi; Vijayaraghavan, 2014) argued that self-management needs to
apply through allowing everyone to choose their tasks, focusing on continuous lear-
ning activities, sharing knowledge and team building, being able to share and define
problems and activities when possible, and assigning unique responsibilities (GUPTA;
JAIN; SINGH, 2018; LAL; CLEAR, 2018; ALSAQAF; DANEVA; WIERINGA, 2017; Ger-
vigny; Nagowah, 2017; RAZZAK et al., 2017; RAZZAK, 2016b; Gupta; Manikreddy,
2015; MOE et al., 2015; TRIPATHI et al., 2015; HUBER; DIBBERN, 2014).

4.2.14 Continuous integration (11)
Many reviewed studies presented projects that applied continuous integration

(LOUS; KUHRMANN; TELL, 2017; Sundararajan; Bhasi; Vijayaraghavan, 2014; HOLE;
MOE, 2008) as a practice of distributed teams. One project related having a specific dis-
tributed team to handle all activities regarding continuous integration (Szabó; Steghöfer,
2019). Goal: it aims to ensure that the value is being delivered to the customer constan-
tly through an automated process. Who: dev teams. How: a study reported that solution
modules were integrated overnight to identify build failures (Sundararajan; Bhasi; Vi-
jayaraghavan, 2014). Furthermore, use optional regression tests and failure reports can
be helpful to identify any issue that could come from a failure to build (Szabó; Steghöfer,
2019; LOUS; KUHRMANN; TELL, 2017; VALLON et al., 2017; RIZVI; BAGHERI; GA-



Capítulo 4. Research Development 43

SEVIC, 2015; Sriram; Mathew, 2012; AVRITZER; BRONSARD; MATOS, 2010; HOLE;
MOE, 2008; LEE; YONG, 2009; Jalali; Wohlin, 2010; Nuevo; Piattini; Pino, 2011).

4.2.15 Burndown charts (11)
In a distributed environment the use of electronic tools to support the burndown

charts seems to be the best option for teams (HOSSAIN; BANNERMAN; JEFFERY,
2011b; RICHTER; RAITH; WEBER, 2016; KAUSAR; AL-YASIRI, 2017; LEE; YONG,
2009). For instance, burndown is the most common and shows the estimated amount
of remaining sprint backlog across the time of a sprint (Nuevo; Piattini; Pino, 2011).Goal:
discover the capacity of the team, showing the members their progress, and their esti-
mation accuracy. Who: scrum master. How: according to the studies (HOSSAIN; BAN-
NERMAN; JEFFERY, 2011b; RICHTER; RAITH; WEBER, 2016; KAUSAR; AL-YASIRI,
2017; LEE; YONG, 2009), the best way to implement burndown charts in distributed
teams is by using electronic tools. It makes the charts available to any member across
the globe and helps synchronize the teams (VALLON et al., 2017; VALLON et al., 2013;
RALPH; SHPORTUN, 2013; TANNER; CHIGONA, 2012; HILLEGERSBERG; LIGTEN-
BERG; AYDIN, 2011; Jalali; Wohlin, 2010; Nuevo; Piattini; Pino, 2011).

4.2.16 Synchronize work hours (10)
The synchronization of working hours is a practice used in distributed agile de-

velopment in which teams that have different time zones seek to have, at least, some
intersection in working time(Hossain; Babar; Paik, 2009). Goal: increase communica-
tion and collaboration among team members, and reduce misunderstandings with syn-
chronized working hours. Who: teams. How: The synchronization of working hours can
vary, as the variations in time zones can be very different. Thus, it is necessary to
find common times, so that teams can have synchronous communication (Sundarara-
jan; Bhasi; Vijayaraghavan, 2014; HOSSAIN; BANNERMAN; JEFFERY, 2011a; BASS,
2015). Besides it, according to Nuevo et al., (Nuevo; Piattini; Pino, 2011) the mee-
tings hours can be alternated, like taking meetings during a team’s normal working
hours and at another time conduct the meetings during the other team’s hours (HIL-
LEGERSBERG; LIGTENBERG; AYDIN, 2011; HOSSAIN; BABAR; VERNER, 2009b;
PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; KUSSMAUL; JACK; SPONSLER,
2004; LEE; YONG, 2009; Hossain; Babar; Paik, 2009).

4.2.17 Coaching (9)
The studies related to coaching focused on teaching the agile methods to the

client (RIZVI; BAGHERI; GASEVIC, 2015), training the globally distributed teams for
the agile process (LEE; YONG, 2009), having meetings to reinforce the value of scrum



Capítulo 4. Research Development 44

(Hossain; Babar; Paik, 2009), and training the team members for the application of adap-
ted practices such distributed programming(ESTáCIO; PRIKLADNICKI, 2014) and on
coding skills (MOE et al., 2015). Goal: it aims to coach the distributed teams, and the
customer in agile methods to align them with the agile process. Also, it provides trai-
ning for the team members in technical skills. Who: scrum master and team lead. How:
according to Rizvi et al. (RIZVI; BAGHERI; GASEVIC, 2015), the scrum master was
responsible to coach the organization into the agile way of working. Furthermore, some
companies provide training in agile methods for the globally distributed teams (LEE;
YONG, 2009) and others send their more experienced people to another site for trai-
ning the junior members (S.; KUMAR; MANI, 2018; MOE et al., 2015; ESTáCIO; PRI-
KLADNICKI, 2014; Sundararajan; Bhasi; Vijayaraghavan, 2014; DUMITRIU; OPREA;
MESNITA, 2011; HOSSAIN; BABAR; VERNER, 2009b; Hossain; Babar; Paik, 2009).

4.2.18 Task management (9)
Task management is a practice that manages a task throughout its process. Its

focus on assigning tasks to the team members according to their roles and skills, and
to make them visible to anyone in the distributed sites (KAUSAR; AL-YASIRI, 2017; BA-
NIJAMALI et al., 2017). Goal: help in team collaboration and coordination throughout
the execution of project tasks. Who: teams, product owner, and scrum master. How:
Kausar and Yasiri found in the study (KAUSAR; AL-YASIRI, 2017) that the practice is
used through online sharing tools, in which the entire team can have access to the
product backlog, storyboard, taskboard, burndown graphics, and other agile artifacts.
In addition, a central code repository was used so that teams can see the progress
of the tasks (HOSSAIN; BANNERMAN; JEFFERY, 2011b; LOUS et al., 2018a; BANI-
JAMALI et al., 2017; MODI; ABBOTT; COUNSELL, 2017; CHO, 2007; KUSSMAUL;
JACK; SPONSLER, 2004; Hossain; Babar; Paik, 2009).

4.2.19 Necessary documentation (9)
The necessary documentation is the practice of producing the minimum amount

of document in the agile software development that generates value (RIZVI; BAGHERI;
GASEVIC, 2015; Hossain; Babar; Paik, 2009).Goal: improve communication and make
information regarding the project available to everybody. Who: teams. How: according
to Hossain et al. study, (Hossain; Babar; Paik, 2009), the use of web platforms, such
as Jira, makes it easier to share the information across distributed teams online and to
track the problems documented. Also, it was observed in the study (RIZVI; BAGHERI;
GASEVIC, 2015) that, by creating documentation, the team members reduced the cons-
tant need for communication, which worked as a benefit once communication among
teams from different cultures can cause problems (RICHTER; RAITH; WEBER, 2016;



Capítulo 4. Research Development 45

Sundararajan; Bhasi; Vijayaraghavan, 2014; Hamid, 2013; AVRITZER; BRONSARD;
MATOS, 2010; HOSSAIN; BABAR; VERNER, 2009b; PAASIVAARA; DURASIEWICZ;
LASSENIUS, 2008; Nuevo; Piattini; Pino, 2011).

4.2.20 Kanban board (8)
Some studies showed that each distributed team had its physical kanban board

on their sites (RIZVI; BAGHERI; GASEVIC, 2015; VALLON et al., 2013; DINGSøYR
et al., 2017). However, other studies presented distributed teams that used electronic
boards (HUBER; DIBBERN, 2014; HILLEGERSBERG; LIGTENBERG; AYDIN, 2011),
and teams that used to have both electronic and physical Kanban boards (TRIPATHI
et al., 2015). Goal: promote the visualization and the limits of the work in process in
distributed teams across different sites. Who: teams, product owner, scrum master.
How: according to the studies reviewed, each distributed team can have their physical
kanban board in their sites (TRIPATHI et al., 2015; VALLON et al., 2013; DINGSøYR
et al., 2017), but it can make it hard to replicate the status among the different sites.
Also, it is possible to use an electronic board for all distributed teams which makes it
easy for any team to visualize the status updates of tasks (HUBER; DIBBERN, 2014;
HILLEGERSBERG; LIGTENBERG; AYDIN, 2011). Furthermore, scaling Kanban was a
practice used by organizations throughout its structure through training and coaching, to
face challenges during large-scale distributed projects (LAL; CLEAR, 2018; TRIPATHI
et al., 2015; RIZVI; BAGHERI; GASEVIC, 2015; Jalali; Wohlin, 2010).

4.2.21 Design the team (8)
Some articles suggest to disperse the most technical members across different

distributed teams (HOSSAIN; BABAR; VERNER, 2009b; Hossain; Babar; Paik, 2009;
Nuevo; Piattini; Pino, 2011) and to form teams with members located across different
time zones to enhance the development across 24/7 routine (MARUPING, 2010; HIL-
LEGERSBERG; LIGTENBERG; AYDIN, 2011). Goal: form cross-functional agile dis-
tributed teams capable of achieving the project’s success with their members. Who:
product owner and scrum master. How: one study showed a distributed project that
had a restriction for team distribution, in the project there was multiple distributed si-
tes, but an agile distributed team could only have members between two different sites
(Hossain; Babar; Paik, 2009). Furthermore, the study of Vallon et al. presented a distri-
buted project with three scrum teams formed across all products and based on logical
requirements areas (GUPTA; JAIN; SINGH, 2018; VALLON et al., 2013; LI; MäDCHE,
2013; HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; MARUPING, 2010; HOSSAIN;
BABAR; VERNER, 2009b; Nuevo; Piattini; Pino, 2011).



Capítulo 4. Research Development 46

4.2.22 Co-locate all team members at the beginning (8)
Get the whole teams together at the beginning of the project can be helpful to

exchange experiences, project goals with the team members (RALPH; SHPORTUN,
2013; DORAIRAJ; NOBLE; MALIK, 2012; PAASIVAARA; LASSENIUS, 2010). Goal:
facilitate team interaction even for a short time. It aims to establish trust in the en-
tire team. Who: teams. How: according to the reviewed studies (AVRITZER; BRON-
SARD; MATOS, 2010; Hossain; Babar; Paik, 2009; Nuevo; Piattini; Pino, 2011), the
agile distributed projects choose to gather all the team members, when possible, at the
beginning of the project. It aims to execute the first sprints with the team members co-
located, improving their relationship, and sharing the project vision among them (RIZVI;
BAGHERI; GASEVIC, 2015; RALPH; SHPORTUN, 2013; DORAIRAJ; NOBLE; MA-
LIK, 2012; HOSSAIN; BANNERMAN; JEFFERY, 2011a; PAASIVAARA; LASSENIUS,
2010).

4.2.23 Test driven development - TDD (7)
TDD is a software development practice in which tests are written before the

features are ready so that the code produced is made to pass these tests and to avoid
waste in coding (Nuevo; Piattini; Pino, 2011).Goal: guarantee quality, avoid code waste,
and improve the development process. Who: dev teams. How: according to Hossain,
Babar, and Verner (HOSSAIN; BABAR; VERNER, 2009a), TDD allowed for a standar-
dized view of development, which facilitated a better understanding of what functio-
nality was required under the customer’s view (HOSSAIN; BABAR; VERNER, 2009a).
Furthermore, one study suggested developing only the code needed to run all the tests,
and whether the tests are successful, the next step would be refactoring the code (LAL;
CLEAR, 2018; VALLON et al., 2017; TRIPATHI et al., 2015, 2015; Jalali; Wohlin, 2010;
Nuevo; Piattini; Pino, 2011).

4.2.24 Project wiki (7)
Information regarding distributed projects needs to be available to anyone in dif-

ferent sites, because of it, an important practice followed by agile distributed teams is
the building of a project wiki (LEE; YONG, 2009; Hossain; Babar; Paik, 2009; Nuevo; Pi-
attini; Pino, 2011).Goal: concentrate all the information regarding the distributed project
in one place that can be accessible for any team member. Who: teams. How: the pro-
ject wiki is usually used to store information regarding system documentation, functional
tests, architectural guidelines, team routines, and sprint retrospectives (DINGSøYR et
al., 2017). Furthermore, studies showed that agile distributed teams usually have a
collaborative online wiki to store the project documentation (AVRITZER; BRONSARD;



Capítulo 4. Research Development 47

MATOS, 2010; HOSSAIN; BABAR; VERNER, 2009a; HOSSAIN; BABAR; VERNER,
2009b; LEE; YONG, 2009; Hossain; Babar; Paik, 2009; Nuevo; Piattini; Pino, 2011).

4.2.25 Estimation meeting (6)
Estimation meetings are events that take place among distributed teams during

a project to evaluate the effort needed to develop the requirements for that sprint (VAL-
LON et al., 2017). Goal: measure the necessary effort to develop the project tasks and
meet the delivery deadlines. Who: dev teams. How: the reviewed studies do not des-
cribe properly how to conduct estimation meetings. However, as many of the distributed
meetings, it needs to be through web-based platforms, such as videoconference, audi-
oconferences. However, the studies described the use of many estimation techniques,
like task size, story points, use case points, etc (VALLON et al., 2017; GONÇALVES
et al., 2017; Britto; Mendes; Börstler, 2015; TRIPATHI et al., 2015; BRITTO; USMAN;
MENDES, 2014; Sundararajan; Bhasi; Vijayaraghavan, 2014).

4.2.26 Continuous deployment (6)
In the reviewed studies, continuous deployment was cited as a practice of some

agile distributed teams (RIZVI; BAGHERI; GASEVIC, 2015; HOSSAIN; BABAR; VER-
NER, 2009b; HOLE; MOE, 2008). However, as discussed in one of the studies (HOS-
SAIN; BABAR; VERNER, 2009b) the everyday deployment of code in the production
environment by a non-experienced team was bad, because it came with a large number
of bugs. Goal: ensure that staged features are constantly deployed in the production
server through an automated process of integration tests and deployment. Who: dev
teams. How: the studies reviewed do not present a definitive way of applying continu-
ous deployment. One company enhanced its continuous deployment process by using
CruiseControl2 to rebuild the project when an update was made though (LAL; CLEAR,
2018; RIZVI; BAGHERI; GASEVIC, 2015; AVRITZER; BRONSARD; MATOS, 2010;
HOSSAIN; BABAR; VERNER, 2009b; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2008; HOLE; MOE, 2008) .

4.2.27 System demo (6)
It is the method for assessing the solution’s current state and gathering imme-

diate feedback from the product owner, stakeholders, and customers (PAASIVAARA;
DURASIEWICZ; LASSENIUS, 2008; DINGSøYR et al., 2017). Goal: demonstrate the
developed requirements of the last iteration. It aims to receive feedback about the work
done. Who: product owner, dev teams, scrum master, and stakeholders. How: accor-
2 cruisecontrol.sourceforge.net



Capítulo 4. Research Development 48

ding to Passivara et al. (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008), systems
demos were organized through teleconferencing and application sharing, with the parti-
cipation of the team members, the product owner, and the scrum master (LAL; CLEAR,
2018; Sundararajan; Bhasi; Vijayaraghavan, 2014; DINGSøYR et al., 2017; Jalali; Woh-
lin, 2010; Hossain; Babar; Paik, 2009).

4.2.28 Test automation (6)
It is used to automate repetitive tasks and testing tasks which are difficult to

perform manually. It aims to ensure that built versions of the solution are working ok
(HOSSAIN; BABAR; VERNER, 2009b; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2008). Goal: test automation aims to execute many test cases automatically and repe-
atedly when a new version of the project is deployed. Who: dev teams. How: according
to Passivara et al., (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008) case study,
the developed product used to be built every night with a set of automated tests, and
whether a built was unsuccessful the distributed team responsible for this building would
be responsible for the fix (LOUS; KUHRMANN; TELL, 2017; VALLON et al., 2017; RAZ-
ZAK et al., 2017; HOSSAIN; BABAR; VERNER, 2009b; Jalali; Wohlin, 2010).

4.2.29 Code review (6)
It is a software development practice in which one or more developers check

parts of the developed code and correct defects found. It aims to guarantee product
quality and share knowledge among team members (MOE et al., 2015; Hamid, 2013;
HILLEGERSBERG; LIGTENBERG; AYDIN, 2011). Goal: improve code quality, detect
bugs early, share knowledge, reduce tests, and assure the solution quality. Who: dev
teams. How: Rizvi et al. study (RIZVI; BAGHERI; GASEVIC, 2015) presents that senior
resources can assist the code review due to their skills. Furthermore, one study sug-
gests the senior developers perform the code review together with junior developers
(MOE et al., 2015). It aims to coach the junior members to write better code in the desi-
red standards (Hamid, 2013; HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; HOLE;
MOE, 2008; Jalali; Wohlin, 2010).

4.2.30 Collaboration among teams (6)
The practice aims to reinforce the collaborations and relationships among the

team members (DORAIRAJ; NOBLE; MALIK, 2011). Also, some unofficial meetings
were conducted for distributed teams just have discussed personal matters and have
some kind of fun conversation (DORAIRAJ; NOBLE; MALIK, 2012). Goal: it aims to in-
crease team collaboration, generating trust, and creating a pleasant atmosphere. Who:
teams. How: according to some studies, the collaboration sessions can be made before



Capítulo 4. Research Development 49

an official meeting, to clarify issues, share problems, or just socialize (Paasivaara, 2017;
DORAIRAJ; NOBLE; MALIK, 2012; TANNER; CHIGONA, 2012; DORAIRAJ; NOBLE;
MALIK, 2011; DINGSøYR et al., 2017; Hossain; Babar; Paik, 2009).

4.2.31 Manage customer expectations (6)
As the name says it is a way to manage customer expectations about the work

in progress. The use of short iterations, frequent feedbacks, and well-managed backlog
are powerful techniques for handling customer expectations (AVRITZER; BRONSARD;
MATOS, 2010). Goal: keep the client aware of what is happening in the project, main-
taining communication and visibility of the project progress. Who: product owner. How:
it is necessary to keep frequent contact with the customer to manage their expectations
(MOE et al., 2015; RAMESH; MOHAN; CAO, 2012), and make them part of the team
(DORAIRAJ; NOBLE; MALIK, 2012). Furthermore, share the backlog content and pro-
gress of the solution to the client can help in the expectation management (VALLON et
al., 2017; AVRITZER; BRONSARD; MATOS, 2010; Jalali; Wohlin, 2010).

4.2.32 Planning game (6)
According to Rizvi study et al. (RIZVI; BAGHERI; GASEVIC, 2015) the planning

game aims to get prioritized requirements from the customer, and then, estimate it.
Goal: plan the prioritized tasks by estimating them with game techniques. Who: dev
teams, product owner, and scrum master. How: according to Maruping study (MARU-
PING, 2010), it is more effective to hold the plan game through synchronous commu-
nication, such as videoconference or telephone. Furthermore, the planning poker te-
chnique appeared as a common technique for planning games in distributed teams
(VALLON et al., 2017; KAUSAR; AL-YASIRI, 2017; RIZVI; BAGHERI; GASEVIC, 2015;
BRITTO; USMAN; MENDES, 2014; Jalali; Wohlin, 2010).

4.2.33 Continuous delivery (6)
The continuous delivery practice consists of delivering code frequently, like daily,

weekly, or every sprint interaction (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008;
KUSSMAUL; JACK; SPONSLER, 2004). Also, It aims to constantly deliver tangible va-
lue to the customer (RAMESH et al., 2006). Goal: deliver software increments to the
customer frequently. Who: dev teams. How: the studies reviewed mentioned the code
deliveries as a frequent activity whose schedule can be defined based on the project ne-
eds (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; KUSSMAUL; JACK; SPONS-
LER, 2004). However, one study suggests the delivery of values since the early phases
of the project (RAJPAL, 2018; LAL; CLEAR, 2018; RAMESH et al., 2006; HOLE; MOE,
2008).



Capítulo 4. Research Development 50

4.2.34 Assign a role to each project member (5)
During the review, we found some articles that described with full details their

agile team roles (Sundararajan; Bhasi; Vijayaraghavan, 2014; VALLON et al., 2013;
RALPH; SHPORTUN, 2013). Most of them used a hybrid team roles approach due to
the distributed environment they were dealing, and the size of the teams. Goal: assign
a role to each project member from the distributed teams based on their existing skills.
Who: team lead. How: the team roles of a distributed agile development team should
be assigned to the project members based on their existing skills and knowledge. As
saw in (Gupta; Manikreddy, 2015) the focus should be given to form a cross-functional
team with all the necessary expertise to develop the solution (Sundararajan; Bhasi;
Vijayaraghavan, 2014; VALLON et al., 2013; RALPH; SHPORTUN, 2013; LI; MäDCHE,
2013).

4.2.35 Agile architecture (5)
The agile architecture supports the application of agile practices by evaluating

the impact of user stories in the component architecture (HILLEGERSBERG; LIGTEN-
BERG; AYDIN, 2011). Goal: guarantee the architecture design simplicity of the solution
while the agile process is conducted. Who: team lead and architects. How: agile archi-
tecture can be used to remove inefficiencies from the software development process
(RIZVI; BAGHERI; GASEVIC, 2015). The agile architecture meetings are commonly
conducted through videoconferencing meetings between architects and team leaders
to discuss improvements across the architecture and its components, to add value to
the product (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; Jha; Vilardell; Narayan,
2016). Besides, in another study (Hossain; Babar; Paik, 2009), authors reported that
an independent architecture with well-defined interfaces enabled teams to be more au-
tonomous (DINGSøYR et al., 2017).

4.2.36 Coding standards (5)
Coding standards are a formalized set of rules and practices that should be fol-

lowed by developers from all sites (HOSSAIN; BABAR; VERNER, 2009a; Jalali; Wohlin,
2010). Goal: assist developers with the formalization of common standards for writing
readable and sustainable code. Who: team lead and dev teams. How: it was suggested
that coding standards need to be discussed and established early in the development
process (MARUPING, 2010). And the senior members of the project should dissemi-
nate the standards and guarantee that all team members had understood the rules that
will guide the development. Furthermore, the coding standards need to be followed by
all distributed sites (VALLON et al., 2017; HOSSAIN; BABAR; VERNER, 2009a; LEE;
YONG, 2009; Jalali; Wohlin, 2010).



Capítulo 4. Research Development 51

4.2.37 Collective code ownership (5)
The practice aims to encourage the team members that they are responsible

for the system design. Some articles presented the use of collective code ownership in
agile distributed teams (Szabó; Steghöfer, 2019; VALLON et al., 2017; TRIPATHI et al.,
2015; LEE; YONG, 2009). Goal: apply collective code ownership to encourage every
team member to be responsible for the system’s design. Also, be able to change any
line of code, add features, fix bugs, and refactor. Who: dev teams. How: according to
Maruping (MARUPING, 2010), the team members need to be aware of their roles and
responsibilities before the implementation of collective code ownership and to achieve
this a meeting involving all sites is necessary (Szabó; Steghöfer, 2019; VALLON et al.,
2017; TRIPATHI et al., 2015; LEE; YONG, 2009).

4.2.38 Refactoring (5)
Refactoring focuses on restructuring the system, removing duplications and un-

necessary code, simplifying the solution design, improving communication, and provi-
ding a better understanding of the code (HOSSAIN; BABAR; VERNER, 2009a). Goal:
simplify maintenance, improve code quality, and understanding. Who: dev teams. How:
according to the case study of Szabó and Steghofer (Szabó; Steghöfer, 2019), the re-
factoring sessions were conducted once or twice per month in their distributed project
(VALLON et al., 2017; HOSSAIN; BABAR; VERNER, 2009a; LEE; YONG, 2009; Jalali;
Wohlin, 2010).

4.2.39 Frequent feedbacks (4)
Frequent feedback was seen as a practice to improve communication among dis-

tributed teams (MOE et al., 2015). Also, to avoid miscommunications or misunderstan-
dings of requirements among the teams and the customer(RIZVI; BAGHERI; GASEVIC,
2015; AVRITZER; BRONSARD; MATOS, 2010). Goal: improve communication among
team members and the customer, motivate the team members, and reduce miscom-
munications. Who: team lead and stakeholders. How: the feedback sessions for the
team can be made monthly to understand how each member can improve to achieve
the goals (Gupta; Manikreddy, 2015). Besides it, feedback loops can be made with the
customer and the team to prevent issues in developed requirements (RIZVI; BAGHERI;
GASEVIC, 2015; MOE et al., 2015; AVRITZER; BRONSARD; MATOS, 2010).

4.2.40 Bug tracking (4)
A bug tracking system is a software application that keeps track of reported

software bugs in software development projects. In GSD some articles reported the



Capítulo 4. Research Development 52

use of web applications for issue tracking (HOSSAIN; BABAR; VERNER, 2009b; CHO,
2007). Goal: keep track of reported bugs and information regarding them. Who: dev
teams. How: several papers mentioned that they used web tools to track problems
and errors, such as Jira (HOSSAIN; BABAR; VERNER, 2009b; CHO, 2007; Hossain;
Babar; Paik, 2009) and Bugzilla (LEE; YONG, 2009). All of them, with the same goal
of tracking the issues that emerge from the solution.

4.2.41 Documentation of lessons learned (4)
Documenting lessons learned is a practice in agile development in which deve-

lopers come together to score successes and mistakes to improve teamwork in future
iterations(RIZVI; BAGHERI; GASEVIC, 2015). Goal: improve teamwork in future itera-
tions. Who: teams. How: according to Rizvi, Bagheri, and Gasevic (RIZVI; BAGHERI;
GASEVIC, 2015), it is recommended to document the lessons learned at the end of
each sprint. Furthermore, the use of lessons learned repository was reported (Sun-
dararajan; Bhasi; Vijayaraghavan, 2014; PAASIVAARA; DURASIEWICZ; LASSENIUS,
2008; Hossain; Babar; Paik, 2009).

4.2.42 Share mission and vision (3)
The goal of the practice is to align all global team members with the goal of the

solution by sharing the mission and vision of the project. In (LAL; CLEAR, 2018) the
authors suggest the practice, to lead and align the developers to implement the solu-
tion considering the end-user experience instead of functionalities driven development.
Goal: align all distributed teams to a common goal, vision, and mission for developing
the solution based on feasible and valuable requirements to the users. Who: product
owner and scrum master.How: the study of Gupta and Manikreddy (Gupta; Manikreddy,
2015) showed that one team member can be responsible for ensuring that all distribu-
ted teams were understanding the project vision and the “Big picture” (LAL; CLEAR,
2018; LEE; YONG, 2009).

4.2.43 Rotate team members among sites (3)
Rotate team members among sites can be helpful to improve the relationships

of the team members, build trust among them, and promote the training of senior to
juniors members (PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008). Goal: rotate
team members among different sites to improve peer-to-peer relationships and build
trust. Who: team lead and scrum master. How: it was reported in one study that some
team members rotate their location near to the customer location (DORAIRAJ; NOBLE;
MALIK, 2012). Furthermore, a case study suggested the rotation of members among



Capítulo 4. Research Development 53

teams, specifically when new members arrived and existing teams needed to be split
(PAASIVAARA; DURASIEWICZ; LASSENIUS, 2008; DINGSøYR et al., 2017).

4.2.44 Simple design (3)
The simple design practice aims to keep the simplicity of the solution, especi-

ally the code and architecture simplicity. Goal: keep the solution design simple along
the development process. Who: dev teams. How: one reviewed study suggested that
the simple design is a continuous activity that aims to simplify existing work (Szabó;
Steghöfer, 2019). Besides it, the same study reported simple design can be affected by
sociocultural distance, leading to decision making without proper technical information
(VALLON et al., 2017; LEE; YONG, 2009).

4.2.45 Roadmap Planning (3)
The roadmap planning is an agile development practice that seeks to plan in

a flexible way the main stages of the project to achieve business objectives and mar-
ket needs (LAL; CLEAR, 2018). Goal: it helps the team understand the project vision.
Who: product owner and team lead. How: according to Hossain et al. (Hossain; Babar;
Paik, 2009), it was found that the roadmap planning took place in quarterly meetings,
contributing to a better understanding of the project’s vision. Also, According to Lal and
Tony (LAL; CLEAR, 2018), the use of roadmap planning enabled the team to make
more collective decision-making, expanded the concern of time-to-market, and impro-
ved the identification of high-level requirements for short-term projects (LAL; CLEAR,
2018; TANNER; CHIGONA, 2012; Nuevo; Piattini; Pino, 2011).

4.2.46 Acceptance tests (3)
Acceptance tests are used to ensure that the developed stories are passing

the acceptance criteria required by the user. Goal: evaluate the system’s compliance
according to the business requirements and customer needs. Who: product owner, sta-
keholders, and dev teams. How: the reviewed studies do not specify how to conduct
acceptance tests, only one study reported that the acceptance criteria for delivery were
defined at project startup (LAL; CLEAR, 2018; Sundararajan; Bhasi; Vijayaraghavan,
2014; Jalali; Wohlin, 2010).

4.2.47 Tests management (2)
The test management practice is related to a test plan and test report strategy

(Nuevo; Piattini; Pino, 2011). The test plan is organized containing all the tests that
need to be performed, and the required tools and resources for it (Nuevo; Piattini; Pino,



Capítulo 4. Research Development 54

2011). Furthermore, the test report contains the scripts used on the test, results of
the performed tests, and the resolutions of the issues (Jha; Vilardell; Narayan, 2016).
Goal: manage the tests of the project through test plans and test reports. Who: testers
and dev teams. How: according to Madan and Rosa (Jha; Vilardell; Narayan, 2016),
test management can be conducted through virtual weekly meetings among distributed
teams, aiming to discuss testing related progress, dependencies, and issue resolution
(Nuevo; Piattini; Pino, 2011).

4.2.48 Expand teams responsibility gradually (2)
The expansion of responsibilities focuses on making the team members inde-

pendent to solve complex problems (MOE et al., 2015). Goal: make the team members
more responsible and capable of doing the project tasks independently. Who: team
lead. How: in the context of GSD, the expansion of responsibilities occurs through small
steps, gradually introducing the most important backlog resources for the teams (MOE
et al., 2015; Nuevo; Piattini; Pino, 2011).

4.3 Discussion and Conclusion of agile practices in AGSD
In the reviewed literature, we find 48 agile practices being applied in GSD. Daily

meetings (see Section 4.2.1), communication practices (see Section 4.2.2), and plan-
ning (see Section 4.2.3) were the most cited practices, respectively with 36, 34, and 24
citations. We realized that both practices have a common point, communication, which
emphasizes an important value of the agile manifesto: individuals and interactions over
processes and tools (BECK et al., 2001). Therefore, we can reaffirm that this value
is also followed in AGSD, as daily meetings, communication practices, and planning
promote the control and coordination of global teams, adding value and sharing the
needed information across everyone in the project.

Despite the benefits of using agile practices in GSD, there are some challenges
regarding the adaption, control, and coordination of these practices in a global environ-
ment. Synchronized work hours (see Section 4.2.16) is one of the hardest practices to
be adopted since it is almost impossible to synchronize the work hours for distributed
teams with big-time zone differences. Also, co-locate all team members at the begin-
ning (see Section 4.2.22), organize visits among sites (see Section 4.2.5), and rotate
team members among sites (see Section 4.2.43) are not cheap or affordable practices
for all distributed projects which make these practices difficult too.

Beyond the challenges faced, it is important to point to the popularity of Scrum
practices in AGSD since eight of the ten most cited practices from the reviewed studies
are from Scrum, being daily meetings (see Section 4.2.1), planning (see Section 4.2.3),



Capítulo 4. Research Development 55

scrum of scrums (see Section 4.2.4), retrospective meeting (see Section 4.2.6), sprint
(see Section 4.2.7), product backlog (see Section 4.2.8), backlog management (see
Section 4.2.9), user stories (see Section 4.2.10. It is possible to say that Scrum is the
most successful agile method applied from 2004 to 2019 in GSD. Furthermore, the
studies that reported the use of such agile practices show how adaptable they are
in a global environment. Pointing that most of the meetings and events presented in
agile methods can be handled with the use of online tools, web-based applications, etc
(Szabó; Steghöfer, 2019; RIZVI; BAGHERI; GASEVIC, 2015; Hossain; Babar; Paik,
2009).

We observed that the number of publications became more constant since 2011
(see Figure 5). Besides it, we observed in the same graph the growing number of eva-
luation studies from 2014 to now, appearing more observations, surveys, and interview
studies combined with case studies that can provide more substantial results. Also, it
is possible to see the growth in SLR (see Figure 3) which indicates the maturity that
the research area is gaining. However, it is important to say that the academy and the
industry continue to work together reporting their experiences through case studies. Fi-
gure 5 confirms that in the last decade the number of case study papers continued to
grow.

4.4 Which practices reported in AGSD literature embrace practices
from SAFe when adopting scale agile development?
From the 19 reviewed studies related to scaling agile practices, 15 of them are

case studies in real industrial scenarios as presented in table 6. We classified those
15 case studies into the taxonomy of Dingsøyr et al. (DINGSØYR; FÆGRI; ITKONEN,
2014) that points out the scale of agile in software development projects based on
the number of teams. Based on this taxonomy we categorized four studies as large-
scale projects (RAZZAK et al., 2018; S.; KUMAR; MANI, 2018; RAZZAK et al., 2017;
Gupta; Manikreddy, 2015), 10 studies as very large-scale projects (Paasivaara, 2017;
TRIPATHI et al., 2015; LI; MäDCHE, 2013; HILLEGERSBERG; LIGTENBERG; AYDIN,
2011; MARUPING, 2010; AVRITZER; BRONSARD; MATOS, 2010; LEE; YONG, 2009;
DINGSøYR et al., 2017; Jha; Vilardell; Narayan, 2016; Nuevo; Piattini; Pino, 2011),
and only one could not be classified (GUPTA; JAIN; SINGH, 2018). From those case
studies three of them stated the use of SAFe, the majority reported the use of scaled
agile methods, such as Scrum of scrums, Scaled Kanban, and XP.

In those studies, we could see different companies go through the process of
adapting their development process to an agile large-scale level, since the adoption
phase, the implementation, and maintenance of the agile process. Interestingly, the



Capítulo 4. Research Development 56

studies present AGSD projects executed most of the time in Europe, North America,
and India. Besides it, we can classify the studies based on the number of team members
involved in the development, just one study had less than 100 contributors (RAZZAK
et al., 2017), most of them had from more 100 to less than 1000 members (RAZZAK
et al., 2018; Paasivaara, 2017; S.; KUMAR; MANI, 2018; Gupta; Manikreddy, 2015;
TRIPATHI et al., 2015; LI; MäDCHE, 2013; HILLEGERSBERG; LIGTENBERG; AYDIN,
2011; MARUPING, 2010; AVRITZER; BRONSARD; MATOS, 2010; LEE; YONG, 2009;
Jha; Vilardell; Narayan, 2016), and finally, one article reported an extreme large-scale
case with 30 thousand members across 100 countries (Nuevo; Piattini; Pino, 2011).

Also, an overview of the scaling practices, SLR studies, and equivalent practices
from SAFe are present in Table 7.

ID Organization Product/service Scale Framework(s) used Team locations

(RAZZAK et al., 2018) Ocuco Ltd Optical industry 9 teams
>300 SAFe Canada, France, USA, Spain, Poland,

UK, Norway, Italy, Ireland

(Paasivaara, 2017) Comptel Mobile usage data
processing

14 teams
>100 SAFe Finland, Malaysia, Norway, UK, Bulgaria

(S.; KUMAR; MANI, 2018) NA Medical services 4 teams
200

Scrum of scrums and
Lean Europe, USA, India

(GUPTA; JAIN; SINGH, 2018) NA Mission- critical
software 120 Scrum of scrums India, Germany

(RAZZAK et al., 2017) Ocuco Ltd Optical industry 3 teams
>70 SAFe Europe, North America

(Gupta; Manikreddy, 2015) NA NA 3 teams
NA Scrum of scrums India, Germany, Usa

(TRIPATHI et al., 2015) NA Telecommunications 11 teams
110 Scaled Kanban Northern Europe, Western Europe, India

(LI; MäDCHE, 2013) GlobCo* Software factory 44 teams
421 Scrum of scrums Europe, Asia

(HILLEGERSBERG; LIGTENBERG; AYDIN, 2011) Cordys Business Process
Management (BPM)

15 teams
560 Scrum of scrums India, Netherlands, Germany, UK, China,

Americas

(MARUPING, 2010) NA Business Process
Management (BPM)

73 teams
689 Scaled XP India, USA

(AVRITZER; BRONSARD; MATOS, 2010) NA Control and monitoring
of systems

25 teams
200 Scrum of scrums USA, India, Germany, USA, Greece

(LEE; YONG, 2009) Yahoo! My Yahoo! 21 teams Scrum of scrums 17 countries: Europe, North America,
South America, Asia

(DINGSøYR et al., 2017) Pension Fund*,
Accenture, Steria

Office automation
system

12 teams
175 Scrum of scrums Norway

(Jha; Vilardell; Narayan, 2016) Siemens
Platform for future
building technology
applications

16 teams
>100 Scrum of scrums Europe, Asia, North America

(Nuevo; Piattini; Pino, 2011) NA Software factory >30.000 Mixed/custom
frameworks 100 countries worldwide

Tabela 6 – Case studies

4.4.1 Communication practices
Communication practices were seen in most of the studies. The “multiple com-

munication modes” (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; BASS, 2015)
combine a variety of synchronous and asynchronous approaches. Synchronous mee-
tings simulate face-to-face communication (RAZZAK et al., 2018; KAUSAR; AL-YASIRI,
2017; MARUPING, 2010; AVRITZER; BRONSARD; MATOS, 2010; Nuevo; Piattini;
Pino, 2011). For reviewing and planning meetings, the use of screen share (KAUSAR;
AL-YASIRI, 2017; BASS, 2015), videoconference, chat, and teleconference tools (BASS,
2015; Nuevo; Piattini; Pino, 2011) were also reported. However, asynchronous informa-
tion transfer was also present and conducted in AGSD projects due to the time diffe-



Capítulo 4. Research Development 57

R
eferences

A
G
SD

Practice
SA

Fe
Practice

(R
AZZAK

etal.,2018;KAU
SAR

;AL-YASIR
I,2017;G

upta;M
anikreddy,2015;R

azavi;Ahm
ad,2014;H

ILLEG
ER

SBER
G

;LIG
TEN

BER
G

;AYD
IN

,2011;M
AR

U
PIN

G
,2010;AVR

ITZER
;BR

O
N

SAR
D

;M
ATO

S,2010;BASS,2015;N
uevo;Piattini;Pino,2011)

C
om

m
unication

practices
•C

onstantcom
m

unication
•Inter-team

com
m

unication
(S.;KU

M
AR

;M
AN

I,2018;G
U

PTA;JAIN
;SIN

G
H

,2018;KAU
SAR

;AL-YASIR
I,2017;G

upta;M
anikreddy,2015;LI;M

äD
C

H
E,2013;AVR

ITZER
;BR

O
N

SAR
D

;M
ATO

S,2010;LEE;YO
N

G
,2009;D

IN
G

SøYR
etal.,2017;N

uevo;Piattini;Pino,2011)
Scrum

ofscrum
s

•Scrum
ofscrum

s
(Paasivaara,2017;G

upta;M
anikreddy,2015;AVR

ITZER
;BR

O
N

SAR
D

;M
ATO

S,2010;LEE;YO
N

G
,2009;N

uevo;Piattini;Pino,2011)
Visits

am
ong

sites
•G

em
ba

w
alks

(TR
IPATH

Ietal.,2015;H
ILLEG

ER
SBER

G
;LIG

TEN
BER

G
;AYD

IN
,2011;D

IN
G

SøYR
etal.,2017)

Kanban
board

•Program
and

Solution
Kanban

•Lim
itw

ork
in

process
•W

IP
lim

its
by

the
team

•Progress
ofitem

s
•Buffers

in
W

IP
states

•Item
s

expedition
•Program

Epic
Kanban

ifnecessary
(KAU

SAR
;AL-YASIR

I,2017)
Task

m
anagem

ent
•D

evelopm
entprocess

visibility
(S.;KU

M
AR

;M
AN

I,2018;LEE;YO
N

G
,2009)

Agile
C

oaching
•C

ross
training

(AVR
ITZER

;BR
O

N
SAR

D
;M

ATO
S,2010;N

uevo;Piattini;Pino,2011)
D

ocum
entnecessary

inform
ation

•R
eadiness

activities
•Vision

presentation
continuously

(H
ILLEG

ER
SBER

G
;LIG

TEN
BER

G
;AYD

IN
,2011;BASS,2015;LEE;YO

N
G

,2009;N
uevo;Piattini;Pino,2011)

Synchronize
w

ork
hours

•C
om

m
on

cadence
and

synchronization

(AVR
ITZER

;BR
O

N
SAR

D
;M

ATO
S,2010;LEE;YO

N
G

,2009;D
IN

G
SøYR

etal.,2017;N
uevo;Piattini;Pino,2011)

Projectw
iki

•A
solid

log
infrastructure

•PIobjectives
definition

•W
ikiforrem

ote
team

s
(D

IN
G

SøYR
etal.,2017)

System
dem

o
•System

dem
o

(G
upta;M

anikreddy,2015;LI;M
äD

C
H

E,2013)
Assign

a
role

to
each

projectm
em

ber
•Agile

team
s

•Leadership
roles

(Paasivaara,2017;D
IN

G
SøYR

etal.,2017)
C

ollaboration
am

ong
team

s

•C
ollaboration

am
ong

team
s

•C
ollaboration

and
organization

•C
ollaboration

betw
een

team
and

PO
•Features

definition
•C

ollaboration
betw

een
Solution

and
System

Architects
•Agile

team
s

and
business

ow
ners

proxim
ity

(H
ILLEG

ER
SBER

G
;LIG

TEN
BER

G
;AYD

IN
,2011;D

IN
G

SøYR
etal.,2017;Jha;Vilardell;N

arayan,2016)
Agile

architecture
•Agile

architecture
•M

odulararchitecture
•Intentionalarchitecture

•Architecture
increm

entally
•ArchitecturalR

unaw
ay

(M
AR

U
PIN

G
,2010;LEE;YO

N
G

,2009)
C

oding
standards

•C
oding

standards
•M

odulararchitecture
•SO

LID
•D

esign
patterns

(G
upta;M

anikreddy,2015;LEE;YO
N

G
,2009)

Share
m

ission
and

vision
•Top

ten
features

forthe
nextPI•H

olistic
and

cohesive
vision

•Vision
presentation

continuously
•Share

m
ission

and
vision

(LEE;YO
N

G
,2009)

Sim
ple

design
•Q

uality
ofarchitecture

and
design

•D
esign

patterns
•Set-Based

D
esign

(SBD
)•D

esign
choices

•Em
ergentdesign

(N
uevo;Piattini;Pino,2011)

R
oadm

ap
Planning

•R
oadm

ap
•Plan

as
shortand

as
flexible

as
possible

•Q
uarters

planning
•C

ontinuous
exploration

(N
uevo;Piattini;Pino,2011)

Expand
team

s
responsibility

gradually
•Stop-the-line-m

entality

Tabela
7

–
Scaling

practices



Capítulo 4. Research Development 58

rence among teams (KAUSAR; AL-YASIRI, 2017), such as use of a wiki, document
repositories in AGSD articles (AVRITZER; BRONSARD; MATOS, 2010).

Similar to the practices reported in the reviewed studies, constant communica-
tion and collaboration is a SAFe practice to empower decision-making and help teams
meet their responsibilities.

It is possible to link communication practices from the SLR with both practices
from SAFe. Although in AGSD, due to the geographic distribution, it is more likely to
happen through electronic tools, such as videoconference, chats, and emails.

4.4.2 Scrum of Scrums
It is possible to state that Scrum of Scrums (SoS) practice from AGSD studies

and SAFe have almost the same goals and procedures. Both bring together the scrum
master of each team to review, discuss, and coordinate the project progress, the de-
pendencies across the teams, the impediments, and other issues (S.; KUMAR; MANI,
2018; KAUSAR; AL-YASIRI, 2017; Gupta; Manikreddy, 2015).

4.4.3 Visits among sites
Visits among sites is an AGSD practice that aims to make team members visit

other team members in different sites to reduce sociocultural distances, improve com-
munication, and achieve better collaboration among teams (Gupta; Manikreddy, 2015;
Nuevo; Piattini; Pino, 2011). This AGSD practice is a bit similar to Gemba Walks from
SAFe that suggest visits to the site where the customer work is done (Leffingwell, Dean,
2020). It aims to build empathy for the teams by providing a deeper understanding of
the user’s emotional and physical needs (Leffingwell, Dean, 2020). Due to the similarity
of promoting visits across sites, both practices were linked.

4.4.4 Kanban board
The use of Kanban board is common in the AGSD projects and in SAFe. As we

saw in the reviewed studies, some teams have their board at their sites (DINGSøYR
et al., 2017), and others have presented electronic boards that were shared across
different sites for all global teams (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011).
Due to this, we can link the kanban board practice to the practices of team, program and
solution kanban (Leffingwell, Dean, 2020) from SAFe. The team board is built by each
team to visualize their current process flow. Besides, different from work in progress
from agile methods, SAFe has work in process (WIP) limits that are defined by the
team at the beginning (Leffingwell, Dean, 2020), which give it a similar meaning. Also,



Capítulo 4. Research Development 59

the team can adjust and refine the WIP limits of their task board to improve and optimize
flow (Leffingwell, Dean, 2020).

4.4.5 Task management
The AGSD practice of task management focuses on assigning tasks to the team

members based on their skills and roles, and to make them visible to anyone in the
distributed sites (KAUSAR; AL-YASIRI, 2017). This practice can be linked to the deve-
lopment process visibility from SAFe (Leffingwell, Dean, 2020). SAFe practice aims to
make development process visible to anyone to help all team members to visualize the
stories and their progress throughout the iteration (Leffingwell, Dean, 2020).

4.4.6 Agile coaching
Agile coaching practice from AGSD studies focuses on training the global teams

in the agile process (LEE; YONG, 2009) and specifically in coding skills (S.; KUMAR;
MANI, 2018). Such a practice can be linked to cross-training from SAFe (Leffingwell,
Dean, 2020), which aims to make the team members develop skills in new domains,
development languages, and systems. Both AGSD and SAFe have specific practices to
coaching the teams, although in AGSD coaching in the agile process was more explicit
(LEE; YONG, 2009).

4.4.7 Document necessary information
This practice can be linked to two practices from SAFe: readiness activities (Lef-

fingwell, Dean, 2020), and vision presentation continuously (Leffingwell, Dean, 2020).
It aims on documenting and making available the necessary information about the pro-
ject that generates value both to the customer and to global teams (AVRITZER; BRON-
SARD; MATOS, 2010; Nuevo; Piattini; Pino, 2011). From the other side, SAFe readi-
ness activities usually happen in innovation and planning iterations, and documentation
happens at this moment because it is not feasible or economical to perform in every
iteration (Leffingwell, Dean, 2020). Besides it, SAFe has the practice of vision presenta-
tion continuously, which consists of replacing the vision documentation by rolling-wave
vision briefings (Leffingwell, Dean, 2020). Instead of heavy documentation, this prac-
tice provides periodically presentations of the short and long terms vision to the teams
(Leffingwell, Dean, 2020).

4.4.8 Synchronize work hours
In an AGSD, this practice means to establish a common time frame for all global

teams from different time zones, whenever it is possible (HILLEGERSBERG; LIGTEN-



Capítulo 4. Research Development 60

BERG; AYDIN, 2011; BASS, 2015; Nuevo; Piattini; Pino, 2011). Such practice intends to
increase communication, collaboration among teams, and reduce misunderstandings.
It can be linked to the practice of common cadence and synchronization from SAFe
(Leffingwell, Dean, 2020), that establishes the use of a regular and predictive develop-
ment rhythm (Leffingwell, Dean, 2020). Both AGSD and SAFe practice can be linked
since they have the goal to establish common times for the teams to have synchronous
communication and hold meetings.

4.4.9 Project wiki
The building of a project wiki was seen in some AGSD studies, and it aims on

concentrating all the information regarding the global project and making it available to
anyone at different sites (AVRITZER; BRONSARD; MATOS, 2010; LEE; YONG, 2009;
Nuevo; Piattini; Pino, 2011). Similarly, SAFe suggests the use of a wiki to provide align-
ment for remote team members by structured sources of information, besides infor-
mation regarding strategic themes, working rules, agreements, information about the
solution, etc (Leffingwell, Dean, 2020).

4.4.10 System demo
The system demo of AGSD studies has the same process and goals of the SAFe

system demo. It consists of the team showing the current state of the solution to the
product owner, stakeholders, and customers, intending to obtain feedback about the
work done (DINGSøYR et al., 2017). At SAFe is not different, the teams would demo
their work to the product owner as soon as they are done, allowing teams to get their
work completed and ready to show by the end of the iteration (Leffingwell, Dean, 2020).

4.4.11 Assign a role to each project member
Both AGSD and SAFe aims to form a cross-functional team capable of executing

all tasks needed to achieve the solution goals. Assign roles to each project member is
a practice that intends to assign the team members roles based on their skills (Gupta;
Manikreddy, 2015). In AGSD some agile team roles were fully described (Gupta; Ma-
nikreddy, 2015; LI; MäDCHE, 2013), and such practice can be linked to Agile teams
(Leffingwell, Dean, 2020) and leadership roles (Leffingwell, Dean, 2020) from SAFe.
The basic Agile teams from SAFe have a product owner, scrum master role, and the
team (Leffingwell, Dean, 2020). Furthermore, the practice of leadership roles can also
be linked since it consists of letting solution architect/engineering become responsible
for teaching, mentoring, and helping the effectiveness of Agile teams (Leffingwell, Dean,
2020).



Capítulo 4. Research Development 61

4.4.12 Collaboration among teams
AGSD studies and SAFe share the same goal to reinforce the relationships

among teams. It aims to increase collaboration, strengthen the bonds of team members,
and generate trust (Paasivaara, 2017; DINGSøYR et al., 2017). The collaboration prac-
tice from AGSD can be combined with many SAFe practices related to collaboration.
Agile teams are encouraged to collaborate with the PO to create, refine, and define
user stories and acceptance tests for them(Leffingwell, Dean, 2020). The collabora-
tion and organization practice intends to promote collaboration among agile teams and
IT organizations to ensure the DevOps process is working well and the solutions are
being developed and delivered in a reliable way (Leffingwell, Dean, 2020). The colla-
boration between solution and system architects aims to ensure that solutions created
by each ART and suppliers fit the larger capabilities and are in the direction of the ove-
rall solution (Leffingwell, Dean, 2020). The features definition practice aims to suggest
that product managers, product owners, and stakeholders work collaboratively to de-
fine features in ART’s local context, mostly based on epics (Leffingwell, Dean, 2020).
Finally, agile teams and business owners’ proximity aims to promote face-to-face dia-
logue between them and a better understanding of business objectives, stimulate per-
sonal relationships bonds, and assign business values to feature (Leffingwell, Dean,
2020).

4.4.13 Agile architecture
Agile architecture aims to guarantee the solution architecture design while user

needs are being developed (HILLEGERSBERG; LIGTENBERG; AYDIN, 2011; Jha; Vi-
lardell; Narayan, 2016). In SAFe agile architecture combines the DevOps mindset, and
allows the solution architecture to evolve continuously over time, while the user’s cur-
rent needs are being supported (Leffingwell, Dean, 2020). Furthermore, SAFe has the
architecture runaway that is one of the primary tools to support the agile architecture
that supports the implementation of near-term features without the need for a redesign
(Leffingwell, Dean, 2020). SAFe also describes the architecture incrementally practice
that suggests the enterprise to implement architecture features incrementally by indi-
vidual ARTs’ through a program increment (Leffingwell, Dean, 2020). Besides it, the
intentional architecture practice provides the guidance needed for inter-team design,
and to ensure the system is fit for its purpose (Leffingwell, Dean, 2020). Finally, the
modular architecture practice consists of standards interfaces among components to
allow smaller component changes to be published with fewer risk (Leffingwell, Dean,
2020).



Capítulo 4. Research Development 62

4.4.14 Coding standards
Coding standards aim to formalize common standards for writing readable and

sustainable code that should be followed by all developers in the project (MARUPING,
2010; LEE; YONG, 2009). SAFe coding standards have similar purposes, it encoura-
ges code consistency to make everyone able to understand and maintain the quality
of each solution component (Leffingwell, Dean, 2020). SAFe also suggests the use
of design patterns to provide a common language to ease understand and readability
(Leffingwell, Dean, 2020). SAFe suggests the use of SOLID principles too (Leffingwell,
Dean, 2020) to make implementations easier to understand and modify, and conse-
quently let the solution more flexible and able to support new requirements. Finally,
coding standards can be extended to modular architecture from SAFe which aims to
build a software architecture with standard interfaces among components to allow small
component changes to be released independently with fewer risks (Leffingwell, Dean,
2020).

4.4.15 Share mission and vision
This practice aligns all global teams to the same vision and mission for implemen-

ting the solution based on feasible requirements that attend customer needs (Gupta;
Manikreddy, 2015; LEE; YONG, 2009). In SAFe, it consists on the team planning to-
gether in the PI planning to align a shared mission and vision (Leffingwell, Dean, 2020).
Also, SAFe has the practice of a holistic and cohesive vision in which product and so-
lution management work with business owners and stakeholders to synthesize all the
inputs from them and integrate it into a holistic and cohesive vision (Leffingwell, Dean,
2020). Furthermore, SAFe has vision presentation continuously that replaces vision
documentation for vision briefings through short presentations about short- and long-
terms of the vision to the teams (Leffingwell, Dean, 2020). Finally, SAFe has the pre-
sentations of the top ten features for the next PI. It helps the team to better understand
the vision and points that need to be developed urgently (Leffingwell, Dean, 2020).

4.4.16 Simple design
AGSD simple design aims to keep the solution design and architecture as sim-

ple as possible along the development process (LEE; YONG, 2009). The practice can
be linked to some specific practices of SAFe about design such as quality of archi-
tecture and design. Both practices ensure that future requirements would be easier to
implement, the system would be easier to test, and non-functional requirements would
be easily satisfied. Besides, the set-based design (SBD) (Leffingwell, Dean, 2020) that
evaluates multiple design alternatives during the development process that aims to ex-
plore, analyze, and validate multiple choices to remove the unnecessary ones and to



Capítulo 4. Research Development 63

make the best decision by converting uncertainties to knowledge (Leffingwell, Dean,
2020). Also, SAFe has the practice of using design patterns to provide common stan-
dards to ease understanding and readability (Leffingwell, Dean, 2020). Furthermore,
the design choices consist of system architect/engineering working with the agile te-
ams to ensure that design choices are being made with an understanding of the overall
solution to minimize technology complexity and unnecessary duplication of code (Lef-
fingwell, Dean, 2020). Finally, the emergent design (Leffingwell, Dean, 2020) practice
from SAFe provides a technical basis for an incremental development process in the
solution. It allows the solution design to enhance while the solution is being built and
released, and consequently make the agile teams able to respond quickly to any user
needs (Leffingwell, Dean, 2020).

4.4.17 Roadmap planning
The AGSD roadmap provides the customers and suppliers information to unders-

tand and collaboratively plan for the future milestones and deliverables of the solution
(Leffingwell, Dean, 2020; Nuevo; Piattini; Pino, 2011). The SAFe roadmap (Leffingwell,
Dean, 2020) is a schedule of events that provide all stakeholders a view of the current
state of the solution, and the near- and long- terms of the deliverables of the solution.
Also, continuous exploration practice consists of constantly exploring the market and
user needs, defining solution vision, roadmap, and hypotheses to address those needs
(Leffingwell, Dean, 2020).

4.4.18 Expand teams responsibility gradually
In AGSD, this practice consists in making the team members more independent

and capable to solve problems by themselves (Nuevo; Piattini; Pino, 2011). In SAFe,
the practice of stop-the-line-mentality (Leffingwell, Dean, 2020) encourages everyone
to feel able to fix any problem until it’s resolved (Leffingwell, Dean, 2020). It can be
linked to this AGSD practice. Even if the problem is present in the deployed solution
or in the continuous delivery pipeline, the stop-the-line-mentality should be present. It
aims to transform the problems found in improvements and avoid it to happen again in
the future (Leffingwell, Dean, 2020).

4.5 Discussion and conclusion of scaling agile practices in AGSD
“Agilists” such as Ken Schwaber, says that “SAFe is based on RUP, not Scrum”

(Schwaber, Ken, 2013). Stephen Denning (board of Scrum Alliance), affirms that SAFe
reinforces a return to the unproductive vertical world of hierarchical bureaucracy (DEN-
NING, 2015). Pancholi e Grover (PANCHOLI; GROVER, 2014) argue that SAFe “kills



Capítulo 4. Research Development 64

the spirit of agile development”. However, agile large enterprises with dozens or even
hundreds of global teams, complex decision-making mechanisms, often need a structu-
red approach to implement such a significant change (Paasivaara, 2017). Furthemore,
despite the statements of some authors who evaluate to what extent SAFe is truly agile,
according to the Version One 2020 survey (VersionOne, Inc., 2020), SAFe is currently
the most used scaled agile approach followed by scrum-of-scrums method.

Interestingly, only 19 studies from 76 AGSD studies pointed out to scale agile
practices. Although, 57 AGSD studies are related to medium and large projects, but
without giving proper attention to scaling agile. Moreover, these projects could have
benefited from this approach. Most of these studies adapted regular scrum practices to
global scenarios, such as sprints, daily meetings, sprint reviews, continuous delivery,
etc (BJØRN; SØDERBERG; KRISHNA, 2019; Sundararajan; Bhasi; Vijayaraghavan,
2014; HOLE; MOE, 2008). However, they complained about the difficulty to synchro-
nize work hours, align all members (BJØRN; SØDERBERG; KRISHNA, 2019), deal
with hierarchical structures (Sundararajan; Bhasi; Vijayaraghavan, 2014), and maintain
constant communication among teams (HOLE; MOE, 2008).

The literature on AGSD present alternatives for these problems such as Syn-
chronize work hours (4.4.8) to better manage the team members’ work journey and
align them by combining meeting hours; document necessary information (4.4.7) to
help align team members by making information available to anyone through documen-
tation; agile coaching (4.4.6) practice to manage the hierarchical structure with some IT
vendors and customers; and communication practices (4.4.1), such as “multiple com-
munication modes” that could help those projects to establish a communication strategy,
and consequently better manage the communication among teams.

The SLR showed 18 scaling AGSD practices, that could be directed linked to
Scaled Agile Framework (Leffingwell, Dean, 2020). It reinforced that SAFe is a fra-
mework aligned with what is applied in GSD and large-scale agile development pro-
jects.

Despite the evidence that AGSD‘s practices are aligned with SAFe, only th-
ree out of fifteen case studies adopted SAFe, as presented in table 6. It is possible
that the unfamiliarity with SAFe leads AGSD companies to adopt regular and known
agile methods instead of SAFe. According to the studies short releases cycles, po-
sitive cultural changes, communication and interaction reinforcement among teams,
friendly approach for requirement changes, management of dependencies, continuous
integration, and specific practices such as distributed pair programming (GUPTA; JAIN;
SINGH, 2018; TRIPATHI et al., 2015; LI; MäDCHE, 2013; HILLEGERSBERG; LIGTEN-
BERG; AYDIN, 2011; MARUPING, 2010) are some of the reasons reported to chose
methods such as Scrum, XP and Kanban. In the meantime, the studies that used SAFe,



Capítulo 4. Research Development 65

stated that SAFe was chosen due to its scalability and modularity to adopt agile at an
enterprise level, to increase productivity, improve code quality, and also because it
combines Scrum, XP and Kanban practices (RAZZAK et al., 2018; Paasivaara, 2017;
RAZZAK et al., 2017).

Adopt SAFe instead of scaling regular agile methods does not prevent global
teams to face many challenges in large distributed projects. Among them, synchronize
work hours 4.4.8 with team members from different time zones is still difficult even with
SAFe. Organizing multiple events to happen at the same time could also lead to a big
amount of effort to later align all the teams. Furthermore, visits among sites 4.4.3 and
the linked practice Gemba walks (Leffingwell, Dean, 2020) are not always possible to
apply since it is not affordable for any project to send their teams to other sites or the
customer site. Due to it, it is necessary to evaluate each scenario to better understand
which SAFe practices make sense to be adopted since not all practices listed can be
applied in any AGSD project.

Based on Dingsoyr taxonomy et al. (DINGSØYR; FÆGRI; ITKONEN, 2014), it is
important to point that the selected case studies are large-scale projects or very large-
scale projects and that only two studies did not report the number of teams (GUPTA;
JAIN; SINGH, 2018; Nuevo; Piattini; Pino, 2011). The large-scale projects represent
only four case studies, two of them used SAFe in their development process (RAZZAK
et al., 2018; RAZZAK et al., 2017), and the others tailored Lean and Scrum methods
to a scaled level (S.; KUMAR; MANI, 2018; Gupta; Manikreddy, 2015). The majority
of large-scale projects reported were executed with global teams from Europe, North
America, and India.

Eleven of the AGSD studies are pointed out as very large-scale projects. From
those, just one project reported the use of SAFe (Paasivaara, 2017), most of them
used scaled agile methods such as, Scrum (LI; MäDCHE, 2013; HILLEGERSBERG;
LIGTENBERG; AYDIN, 2011; AVRITZER; BRONSARD; MATOS, 2010; LEE; YONG,
2009; Jha; Vilardell; Narayan, 2016), XP (MARUPING, 2010) and Kanban (TRIPATHI
et al., 2015), finally, one study presented a mixed framework that combined XP and
Scrum practices (Nuevo; Piattini; Pino, 2011). Furthermore, it is possible to say that
Scrum and its adaptations are the most chosen framework for AGSD in large projects.
Although, to make Scrum safe by scaling up, sometimes we need to make it SAFe.

At last, the contrast among the case studies was compelling, with projects that
needed to scale agile with three teams and more than 70 contributors (RAZZAK et al.,
2017) to studies with over 30 thousand contributors (Nuevo; Piattini; Pino, 2011) or even
with 73 teams (MARUPING, 2010).

However, while the agile approach suggests light and thin methods, it cannot
avoid dealing with high-level complexity at the company level. Even the most qualified



Capítulo 4. Research Development 66

team needs know which direction to go to create value for the customer. This direction
must come from the company’s strategy. The virtue of the large-scale agile approach
is not to dominate lean, Kanban, XP, or Scrum, but to maintain the two-way flow of
communication between corporate strategic decisions and IT projects. SAFe combi-
nes several AGSD practices and provides a comprehensive view from the top level of
the organization to the team. Some of the applied methods are adjustable and are all
connected to allow strategic alignment with the execution of IT projects in a way that
supports fast and frequent deliveries of a software product.

4.6 Chapter conclusion
The present chapter shows and discusses the results obtained through the ap-

plication of the SLR. Besides it, we present the mapping between the scaling agile and
SAFe practices.

Initially, it details the results of the systematic review of how practices are adop-
ted in global teams. From the 76 studies selected, 48 practices were extracted and
each of them was described according to the evidences present in the studies.

Moreover, after the extraction of 48 agile practices used in the GSD context, the
studies that stated the use of scaling agile practices were evaluated. From 76 reviewed
studies, 19 articles were selected. From those articles, 18 scaling agile practices of the
48 agile practices were identified. Furthermore, the mapping of those practices with
SAFe practices were presented.

Finally, with the results of the SLR, It was possible to answer the research ques-
tions, provide evidence on how agile and scaling agile practices are applied in globally
distributed environments, also present that AGSD and SAFe practices are related.



67

5 Final consideration

Agile global software development can be considered as a popular trend to de-
velop software, as many companies engage to adopt agile methods to better coordinate
the development process of a solution in a distributed context.

This study carried a detailed systematic review of how practices are adopted
in global teams. 76 studies published between 2004 and 2019 were selected. These
studies include 48 agile practices used in global software development. The literature
has shown us that these practices are being adapted to the global context, mitigating the
challenges of the GSD. Also, our study showed that it is possible to adopt agility in GSD
projects without the support of traditional plan-oriented approaches (Szabó; Steghöfer,
2019; LOUS; KUHRMANN; TELL, 2017; LAL; CLEAR, 2018; RAMESH et al., 2006;
RICHTER; RAITH; WEBER, 2016; SIEVI-KORTE; RICHARDSON; BEECHAM, 2019).

Furthermore, it was presented the mapping of 18 agile scaling practices that
were found in the 19 AGSD studies from the SLR with the SAFe 5.0 (Leffingwell, Dean,
2020) practices. Also, it was shown practices of SAFe and how to implement them
could contribute to the implementation of the AGSD practices. The mapping guides by
showing where the SAFe practices can fit in AGSD projects. Furthermore, the linked
practices can help global teams that need to scale agile in distributed environments.

The study contributes to the area of GSD, AGSD, and large-scale agile develop-
ment by showing how to implement and adapt agile in GSD contexts, and also showing
that large-scale agile projects are usually conducted with global teams. Also, the study
help practitioners and researchers that can now see the AGSD practices are related to
SAFe 5.0, and this framework could be the choice to achieve better levels of coordina-
tion in their projects.

5.1 Limitations and threats to validity
The SLR was conducted following a solid research protocol developed and dis-

cussed by the authors, although it still has some threats to validity.

Construct Validity defines in what degree the operational measures that are stu-
died, really represent what the researchers intended to look for and what is investigated
according to the research question (WOHLIN et al., 2012). To reduce this threat the ad-
visor was involved in the extraction of agile practices and in the mapping phase. Both
discussed each extracted and mapped practice, and if any of them disagreed with the
link, they would discuss to reach in a consensus.



Capítulo 5. Final consideration 68

External Validity is related to what extent it is possible to generalize the findings,
and to what extent the findings have value to practitioners and researchers (WOHLIN
et al., 2012). The SLR was conducted through a research protocol developed and va-
lidated by the advisor. Also, It was selected the most renowned databases for agile
research, such as ACM, IEEEXplore, Springer, Scopus, and Wiley. The search string
used in pre-defined bibliographic databases, which are references in agile develop-
ment, ensures certain generalism of the findings since the most articles of the area are
published on those databases. Furthermore, another point that ensures our external
validity is pointed by the fact that the research findings have been of interest to prac-
titioners and researchers since the early 2000s (Razavi; Ahmad, 2014). Finally, the
repetition of the research protocol using the same search engines can easier study
reproduction.

Internal Validity is concerned about the effects of the treatments on the variables
due to uncontrolled factors in the environment (WOHLIN et al., 2012). To mitigate this
threat the research protocol was strictly followed through the analysis of the articles with
the involvement of the advisor. Besides it, every article chose and practice extracted
from the papers was discussed, and when one of them disagreed with a choice, all of
them discussed to reach a common agreement. Such activity aimed to ensure internal
validity and assure that all results would derive from the data.

5.2 Future work
During the execution of this research, it is possible to point some gaps and pos-

sibilities for future research that can be based on the results presents. The following
possibility for future works are:

1. Continue the SLR to verify whether teams that claim to be agile are indeed agile
or use a hybrid approach;

2. Evaluate more deeply the SLR results to identify how AGSD teams deal with
uncertainties such as threats and opportunities;

3. Evaluate the mapping AGSD and SAFe practices in a real industrial development
project through the execution of a case study;

4. Execute a survey with distributed agile teams to verify if SAFe and AGSD practi-
ces are being used at large-scale distributed projects;

5. Expand the study to evaluate the adoption of AGSD and SAFe practices to help
manage uncertainties in agile large-scale projects.



69

Referências

ALSAHLI, A. A.; KHAN, H.; ALYAHYA, S. Agile development overcomes gsd
challenges: A systematic literature review. International Journal of Computer Science
and Software Engineering, v. 6, p. 7–18, 01 2017. Citado na página 22.

ALSAQAF, W.; DANEVA, M.; WIERINGA, R. Quality requirements in large-scale
distributed agile projects – a systematic literature review. In: GRÜNBACHER, P.;
PERINI, A. (Ed.). Requirements Engineering: Foundation for Software Quality. Cham:
Springer International Publishing, 2017. p. 219–234. ISBN 978-3-319-54045-0. Citado
4 vezes nas páginas 39, 40, 41 e 42.

ALTAF, A. et al. A systematic literature review on factors impacting agile adaptation in
global software development. In: Proceedings of the 2019 7th International Conference
on Computer and Communications Management. New York, NY, USA: Association
for Computing Machinery, 2019. (ICCCM 2019), p. 158–163. ISBN 9781450371957.
Disponível em: <https://doi.org/10.1145/3348445.3348463>. Citado na página 15.

ALZOUBI, Y.; GILL, A.; AL-ANI, A. Empirical studies of geographically distributed
agile development communication challenges: A systematic review. Information &
Management, v. 53, 08 2015. Citado na página 22.

AMBLER, S. W.; LINES, M. Disciplined agile delivery: A practitioner’s guide to agile
software delivery in the enterprise. [S.l.]: IBM press, 2012. Citado na página 15.

AVRITZER, A.; BRONSARD, F.; MATOS, G. Improving global development using
agile. In: . Agility Across Time and Space: Implementing Agile Methods in
Global Software Projects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
p. 133–148. ISBN 978-3-642-12442-6. Disponível em: <https://doi.org/10.1007/
978-3-642-12442-6_9>. Citado 20 vezes nas páginas 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 49, 51, 55, 56, 57, 58, 59, 60 e 65.

BANIJAMALI, A. et al. Empirical investigation of scrumban in global software
development. In: HAMMOUDI, S. et al. (Ed.). Model-Driven Engineering and Software
Development. Cham: Springer International Publishing, 2017. p. 229–248. ISBN
978-3-319-66302-9. Citado 2 vezes nas páginas 37 e 44.

BASS, J. How product owner teams scale agile methods to large distributed
enterprises. Empirical Software Engineering, v. 20, p. 1525–1557, 12 2015. Citado 6
vezes nas páginas 36, 37, 43, 56, 57 e 60.

BECK, K. Extreme programming explained: Embrace change. Addison-Wesley
Professional, 2000. Citado 2 vezes nas páginas 18 e 20.

BECK, K. et al. Manifesto for Agile Software Development. 2001. Disponível em:
<http://www.agilemanifesto.org/>. Citado 5 vezes nas páginas 15, 18, 19, 20 e 54.

Betz, S.; Makio, J.; Stephan, R. Offshoring of software development - methods
and tools for risk management. In: International Conference on Global Software

https://doi.org/10.1145/3348445.3348463
https://doi.org/10.1007/978-3-642-12442-6_9
https://doi.org/10.1007/978-3-642-12442-6_9
http://www.agilemanifesto.org/


Referências 70

Engineering (ICGSE 2007). Munich, Germany: IEEE, 2007. p. 280–281. Citado na
página 19.

BITTNER, K. et al. The Nexus Framework for Scaling Scrum: Continuously Delivering
an Integrated Product with Multiple Scrum Teams. [S.l.]: Addison-Wesley Professional,
2017. Citado na página 15.

BJØRN, P.; SØDERBERG, A.-M.; KRISHNA, S. Translocality in global software
development: the dark side of global agile. Human–Computer Interaction, v. 34, p. 174
– 203, 2019. Citado 2 vezes nas páginas 36 e 64.

Britto, R.; Mendes, E.; Börstler, J. An empirical investigation on effort estimation in
agile global software development. In: 2015 IEEE 10th International Conference on
Global Software Engineering. Ciudad Real, Spain: IEEE, 2015. p. 38–45. Citado 2
vezes nas páginas 37 e 47.

BRITTO, R.; USMAN, M.; MENDES, E. Effort estimation in agile global software
development context. In: DINGSØYR, T. et al. (Ed.). Agile Methods. Large-Scale
Development, Refactoring, Testing, and Estimation. Cham: Springer International
Publishing, 2014. p. 182–192. ISBN 978-3-319-14358-3. Citado 3 vezes nas páginas
37, 47 e 49.

CHO, J. Distributed scrum for large-scale and mission-critical projects. In: AMCIS.
[S.l.: s.n.], 2007. v. 1, p. 235. Citado 3 vezes nas páginas 37, 44 e 52.

CONBOY, K. et al. People over process: key people challenges in agile development.
2011. Citado na página 18.

DENNING, S. Agile: it’s time to put it to use to manage business complexity. Strategy
& Leadership, Emerald Group Publishing Limited, 2015. Citado na página 63.

DIKERT, K.; PAASIVAARA, M.; LASSENIUS, C. Challenges and success factors for
large-scale agile transformations : A systematic literature review. Journal of Systems
and Software, v. 53, p. 87–108, 2016. Citado na página 23.

DIKERT, K.; PAASIVAARA, M.; LASSENIUS, C. Challenges and success factors for
large-scale agile transformations: A systematic literature review. Journal of Systems
and Software, Elsevier, v. 119, p. 87–108, 2016. Citado 2 vezes nas páginas 15 e 16.

DINGSØYR, T.; FÆGRI, T. E.; ITKONEN, J. What is large in large-scale? a taxonomy
of scale for agile software development. In: PROFES. [S.l.: s.n.], 2014. Citado 2
vezes nas páginas 55 e 65.

DINGSøYR, T. et al. Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method adaptation. Empirical
Software Engineering, v. 23, p. 1–31, 06 2017. Citado 16 vezes nas páginas 38, 39,
40, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 60 e 61.

DORAIRAJ, S.; NOBLE, J.; MALIK, P. Bridging cultural differences: A grounded theory
perspective. In: Proceedings of the 4th India Software Engineering Conference. New
York, NY, USA: Association for Computing Machinery, 2011. (ISEC ’11), p. 3–10. ISBN
9781450305594. Disponível em: <https://doi.org/10.1145/1953355.1953357>. Citado
2 vezes nas páginas 48 e 49.

https://doi.org/10.1145/1953355.1953357


Referências 71

DORAIRAJ, S.; NOBLE, J.; MALIK, P. Understanding team dynamics in distributed
agile software development. In: WOHLIN, C. (Ed.). Agile Processes in Software
Engineering and Extreme Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012. p. 47–61. Citado 9 vezes nas páginas 18, 36, 37, 38, 39, 46, 48, 49 e 52.

DUMITRIU, F.; OPREA, D.; MESNITA, G. Issues and strategy for agile global
software development adoption. Proceedings of the World Multiconference on Applied
Economics, Business and Development, v. 209, p. 37–42, 01 2011. Citado 3 vezes
nas páginas 37, 38 e 44.

DYBA, T.; DINGSOYR, T.; HANSSEN, G. K. Applying systematic reviews to diverse
study types: An experience report. In: 1st Int’l Conference on Empirical Software
Engineering and Measurement (ESEM) 2007. Madrid, Spain: IEEE, 2007. p. 225–234.
Citado na página 29.

ESTáCIO, B.; PRIKLADNICKI, R. A set of practices for distributed pair programming.
In: ICEIS. [S.l.: s.n.], 2014. v. 2. Citado 4 vezes nas páginas 36, 39, 41 e 44.

Gervigny, M. L. I.; Nagowah, S. D. Knowledge sharing for agile distributed teams: A
case study of mauritius. In: 2017 International Conference on Infocom Technologies
and Unmanned Systems (Trends and Future Directions) (ICTUS). Dubai, United Arab
Emirates: IEEE, 2017. p. 413–419. Citado na página 42.

GONÇALVES, W. F. et al. Using agile methods in distributed software development
environments. In: SILVA, T. Silva da et al. (Ed.). Agile Methods. Cham: Springer
International Publishing, 2017. p. 16–27. ISBN 978-3-319-55907-0. Citado na página
47.

GUPTA, R. K.; JAIN, S.; SINGH, B. Challenges in scaling up a globally distributed
legacy product: A case study of a matrix organization. In: Proceedings of the
13th International Conference on Global Software Engineering. New York, NY,
USA: Association for Computing Machinery, 2018. (ICGSE ’18), p. 77–81. ISBN
9781450357173. Disponível em: <https://doi.org/10.1145/3196369.3196389>. Citado
9 vezes nas páginas 38, 40, 42, 45, 55, 56, 57, 64 e 65.

Gupta, R. K.; Manikreddy, P. Challenges in adapting scrum in legacy global configurator
project. In: 2015 IEEE 10th International Conference on Global Software Engineering.
Ciudad Real, Spain: IEEE, 2015. p. 46–50. Citado 17 vezes nas páginas 36, 37, 38,
39, 40, 41, 42, 50, 51, 52, 55, 56, 57, 58, 60, 62 e 65.

Hamid, A. M. E. Upgrading distributed agile development. In: 2013 INTERNATIONAL
CONFERENCEONCOMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING
(ICCEEE). Khartoum, Sudan: IEEE, 2013. p. 709–714. Citado 6 vezes nas páginas
36, 37, 40, 44, 45 e 48.

HILLEGERSBERG, J. van; LIGTENBERG, G.; AYDIN, M. N. Getting agile methods
to work for cordys global software product development. In: KOTLARSKY, J.;
WILLCOCKS, L. P.; OSHRI, I. (Ed.). New Studies in Global IT and Business Service
Outsourcing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. p. 133–152. ISBN
978-3-642-24815-3. Citado 19 vezes nas páginas 15, 18, 36, 39, 40, 41, 42, 43, 45,
48, 50, 55, 56, 57, 58, 60, 61, 64 e 65.

https://doi.org/10.1145/3196369.3196389


Referências 72

HOLE, S.; MOE, N. B. A case study of coordination in distributed agile software
development. In: O’CONNOR, R. V. et al. (Ed.). Software Process Improvement. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. p. 189–200. ISBN 978-3-540-85936-9.
Citado 12 vezes nas páginas 18, 36, 37, 38, 39, 40, 42, 43, 47, 48, 49 e 64.

Hossain, E.; Babar, M. A.; Paik, H. Using scrum in global software development: A
systematic literature review. In: 2009 Fourth IEEE International Conference on Global
Software Engineering. Limerick, Ireland: IEEE, 2009. p. 175–184. Citado 18 vezes
nas páginas 19, 21, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53 e 55.

HOSSAIN, E.; BABAR, M. A.; VERNER, J. How can agile practices minimize global
software development co-ordination risks? In: O’CONNOR, R. V. et al. (Ed.). Software
Process Improvement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 81–92.
ISBN 978-3-642-04133-4. Citado 8 vezes nas páginas 36, 37, 39, 42, 46, 47, 50 e 51.

HOSSAIN, E.; BABAR, M. A.; VERNER, J. Towards a framework for using
agile approaches in global software development. In: BOMARIUS, F. et al. (Ed.).
Product-Focused Software Process Improvement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. p. 126–140. ISBN 978-3-642-02152-7. Citado 8 vezes nas páginas
36, 38, 43, 44, 45, 47, 48 e 52.

HOSSAIN, E.; BANNERMAN, P. L.; JEFFERY, D. R. Scrum practices in global software
development: A research framework. In: CAIVANO, D. et al. (Ed.). Product-Focused
Software Process Improvement. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
p. 88–102. ISBN 978-3-642-21843-9. Citado 8 vezes nas páginas 36, 37, 38, 39, 40,
42, 43 e 46.

HOSSAIN, E.; BANNERMAN, P. L.; JEFFERY, R. Towards an understanding of
tailoring scrum in global software development: A multi-case study. In: Proceedings
of the 2011 International Conference on Software and Systems Process. New York,
NY, USA: Association for Computing Machinery, 2011. (ICSSP ’11), p. 110–119. ISBN
9781450307307. Disponível em: <https://doi.org/10.1145/1987875.1987894>. Citado
9 vezes nas páginas 36, 37, 38, 39, 40, 41, 42, 43 e 44.

HOSSAIN, S. S. Challenges and mitigation strategies in reusing requirements in
large-scale distributed agile software development: A survey result. In: ARAI, K.;
BHATIA, R.; KAPOOR, S. (Ed.). Intelligent Computing. Cham: Springer International
Publishing, 2019. p. 920–935. Citado 3 vezes nas páginas 37, 38 e 41.

HUBER, T.; DIBBERN, J. How collaboration software enables globally distributed
software development teams to become agile - an effective use perspective.
In: KOTLARSKY, J.; OSHRI, I.; WILLCOCKS, L. P. (Ed.). Governing Sourcing
Relationships. A Collection of Studies at the Country, Sector and Firm Level. Cham:
Springer International Publishing, 2014. p. 49–63. ISBN 978-3-319-11367-8. Citado 4
vezes nas páginas 36, 37, 42 e 45.

Jalali, S.; Wohlin, C. Agile practices in global software engineering - a systematic
map. In: 2010 5th IEEE International Conference on Global Software Engineering.
Princeton, NJ, USA: IEEE, 2010. p. 45–54. Citado 15 vezes nas páginas 18, 36, 37,
39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51 e 53.

https://doi.org/10.1145/1987875.1987894


Referências 73

JALALI, S.; WOHLIN, C. Global software engineering and agile practices: A systematic
review. Journal of Software: Evolution and Process, v. 24, 10 2012. Citado 2 vezes
nas páginas 19 e 21.

Jha, M. M.; Vilardell, R. M. F.; Narayan, J. Scaling agile scrum software development:
Providing agility and quality to platform development by reducing time to market. In:
2016 IEEE 11th International Conference on Global Software Engineering (ICGSE).
Irvine, CA, USA: IEEE, 2016. p. 84–88. Citado 7 vezes nas páginas 50, 54, 55, 56,
57, 61 e 65.

KAUSAR, M.; AL-YASIRI, A. Using distributed agile patterns for supporting the
requirements engineering process. In: .Requirements Engineering for Service and
Cloud Computing. Cham: Springer International Publishing, 2017. p. 291–316. ISBN
978-3-319-51310-2. Disponível em: <https://doi.org/10.1007/978-3-319-51310-2_13>.
Citado 14 vezes nas páginas 36, 37, 38, 39, 40, 41, 42, 43, 44, 49, 56, 57, 58 e 59.

Khmelevsky, Y.; Li, X.; Madnick, S. Software development using agile and scrum in
distributed teams. In: 2017 Annual IEEE International Systems Conference (SysCon).
Montreal, QC, Canada: IEEE, 2017. p. 1–4. Citado 5 vezes nas páginas 36, 37, 38,
40 e 42.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic literature
reviews in software engineering. [S.l.], 2007. Citado 2 vezes nas páginas 16 e 25.

KRUCHTEN, P. Contextualizing agile software development. Journal of software:
Evolution and Process, Wiley Online Library, v. 25, n. 4, p. 351–361, 2013. Citado na
página 18.

KUSSMAUL, C.; JACK, R.; SPONSLER, B. Outsourcing and offshoring with agility:
A case study. In: ZANNIER, C.; ERDOGMUS, H.; LINDSTROM, L. (Ed.). Extreme
Programming and Agile Methods - XP/Agile Universe 2004. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004. p. 147–154. ISBN 978-3-540-27777-4. Citado 5
vezes nas páginas 36, 37, 43, 44 e 49.

LAL, R.; CLEAR, T. Enhancing product and service capability through scaling agility
in a global software vendor environment. In: Proceedings of the 13th International
Conference on Global Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2018. (ICGSE ’18), p. 59–68. ISBN 9781450357173.
Disponível em: <https://doi.org/10.1145/3196369.3196378>. Citado 14 vezes nas
páginas 36, 37, 39, 40, 41, 42, 45, 46, 47, 48, 49, 52, 53 e 67.

LARMAN, C.; VODDE, B. Large-scale scrum: More with LeSS. [S.l.]: Addison-Wesley
Professional, 2016. Citado na página 15.

LAUREN, B. S. Mapping the workspace of a globally distributed “agile” team. Int. J.
Sociotechnology Knowl. Dev., IGI Global, USA, v. 7, n. 2, p. 45–62, abr. 2015. ISSN
1941-6253. Disponível em: <https://doi.org/10.4018/IJSKD.2015040104>. Citado na
página 37.

LEE, S.; YONG, H.-S. Distributed agile: project management in a global environment.
Empirical Software Engineering, v. 15, p. 204–217, 2009. Citado 20 vezes nas
páginas 36, 37, 38, 40, 42, 43, 44, 46, 47, 50, 51, 52, 53, 55, 56, 57, 59, 60, 62 e 65.

https://doi.org/10.1007/978-3-319-51310-2_13
https://doi.org/10.1145/3196369.3196378
https://doi.org/10.4018/IJSKD.2015040104


Referências 74

LEFFINGWELL, D. Scaling software agility: best practices for large enterprises. [S.l.]:
Pearson Education, 2007. Citado na página 15.

Leffingwell, Dean. Scaled Agile Framework®. 2020. <https://www.
scaledagileframework.com/>. [Online; accessed 16-July-2020]. Citado 15
vezes nas páginas 15, 16, 20, 21, 25, 32, 58, 59, 60, 61, 62, 63, 64, 65 e 67.

LI, Y.; MäDCHE, A. Formulating effective coordination strategies in agile global
software development teams. In: Digital Innovation in the Service Economy. 33th
International Conference on Information Systems (ICIS), Orlando, USA, December
16-19, 2012. Vol.: 5. Orlando, FL, USA: Red Hook, Curran (NY), 2013. p. 4438–4449.
ISBN 978-1-62748-604-0. Citado 10 vezes nas páginas 38, 40, 45, 50, 55, 56, 57, 60,
64 e 65.

LOUS, P.; KUHRMANN, M.; TELL, P. Is scrum fit for global software engineering? In:
Proceedings of the 12th International Conference on Global Software Engineering.
Buenos Aires, Argentina: IEEE Press, 2017. (ICGSE ’17), p. 1–10. ISBN
9781538615874. Disponível em: <https://doi.org/10.1109/ICGSE.2017.13>. Citado
10 vezes nas páginas 36, 37, 38, 39, 40, 41, 42, 43, 48 e 67.

LOUS, P. et al. From scrum to agile: A journey to tackle the challenges of distributed
development in an agile team. In: Proceedings of the 2018 International Conference
on Software and System Process. New York, NY, USA: Association for Computing
Machinery, 2018. (ICSSP ’18), p. 11–20. ISBN 9781450364591. Disponível em:
<https://doi.org/10.1145/3202710.3203149>. Citado 3 vezes nas páginas 36, 41 e 44.

LOUS, P. et al. Virtual by design: How a work environment can support agile distributed
software development. In: Proceedings of the 13th International Conference on
Global Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2018. (ICGSE ’18), p. 102–111. ISBN 9781450357173. Disponível em:
<https://doi.org/10.1145/3196369.3196374>. Citado 2 vezes nas páginas 15 e 36.

Marinho, M.; Noll, J.; Beecham, S. Uncertainty management for global software
development teams. In: 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC). Coimbra, Portugal: IEEE,
2018. p. 238–246. Citado na página 19.

MARINHO, M. L. et al. Plan-driven approaches are alive and kicking in agile global
software development. In: International Symposium on Empirical Software Engineering
and Measurement (ESEM). Porto de Galinhas, Brazil: IEEE, 2019. p. 1–11. Citado na
página 20.

MARUPING, L. M. Implementing extreme programming in distributed software
project teams: Strategies and challenges. In: . Agility Across Time and Space:
Implementing Agile Methods in Global Software Projects. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010. p. 11–30. ISBN 978-3-642-12442-6. Disponível em:
<https://doi.org/10.1007/978-3-642-12442-6_2>. Citado 14 vezes nas páginas 18,
37, 40, 41, 45, 49, 50, 51, 55, 56, 57, 62, 64 e 65.

MODI, S.; ABBOTT, P.; COUNSELL, S. Exploring the emergence of collaborative
practices in globally distributed agile software development. In: AMCIS. Boston, USA:
Association for Information Systems, 2017. p. 10. Citado 5 vezes nas páginas 15, 36,
41, 42 e 44.

https://www.scaledagileframework.com/
https://www.scaledagileframework.com/
https://doi.org/10.1109/ICGSE.2017.13
https://doi.org/10.1145/3202710.3203149
https://doi.org/10.1145/3196369.3196374
https://doi.org/10.1007/978-3-642-12442-6_2


Referências 75

MOE, N. et al. Coaching a global agile virtual team. In: Proceedings of the 2015 IEEE
10th International Conference on Global Software Engineering. Ciudad Real, Spain:
IEEE, 2015. Citado 11 vezes nas páginas 36, 37, 38, 39, 40, 42, 44, 48, 49, 51 e 54.

Nuevo, E. d.; Piattini, M.; Pino, F. J. Scrum-based methodology for distributed software
development. In: 2011 IEEE Sixth International Conference on Global Software
Engineering. Helsinki, Finland: IEEE, 2011. p. 66–74. Citado 19 vezes nas páginas
37, 38, 40, 42, 43, 44, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 60, 63 e 65.

PAASIVAARA, M. Adopting safe to scale agile in a globally distributed organization.
In: IEEE. 2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE). [S.l.], 2017. p. 36–40. Citado 2 vezes nas páginas 15 e 16.

Paasivaara, M. Adopting safe to scale agile in a globally distributed organization. In:
2017 IEEE 12th International Conference on Global Software Engineering (ICGSE).
Buenos Aires, Argentina: IEEE, 2017. p. 36–40. Citado 9 vezes nas páginas 20, 38,
49, 55, 56, 57, 61, 64 e 65.

PAASIVAARA, M.; DURASIEWICZ, S.; LASSENIUS, C. Using scrum in a globally
distributed project: A case study. Softw. Process, John Wiley & Sons, Inc., USA, v. 13,
n. 6, p. 527–544, nov. 2008. ISSN 1077-4866. Citado 13 vezes nas páginas 36, 37,
38, 39, 40, 43, 44, 45, 47, 48, 49, 52 e 53.

PAASIVAARA, M.; LASSENIUS, C. Using scrum practices in gsd projects. In: .
Agility Across Time and Space: Implementing Agile Methods in Global Software
Projects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 259–278. ISBN
978-3-642-12442-6. Disponível em: <https://doi.org/10.1007/978-3-642-12442-6_17>.
Citado 7 vezes nas páginas 19, 36, 37, 38, 39, 40 e 46.

PAASIVAARA, M.; LASSENIUS, C. Scaling scrum in a large distributed project.
In: IEEE. 2011 International Symposium on Empirical Software Engineering and
Measurement. [S.l.], 2011. p. 363–367. Citado na página 16.

PANCHOLI, A.; GROVER, S. Scaled agile framework: a blight. International Journal of
Innovative Research and Development (IJIRD), Citeseer, v. 3, n. 5, p. 425–427, 2014.
Citado na página 63.

PETERSEN, K. et al. Systematic mapping studies in software engineering. In:
Proceedings of the 12th International Conference on Evaluation and Assessment
in Software Engineering. Swindon, GBR: BCS Learning & Development Ltd., 2008.
(EASE’08), p. 68–77. Citado 2 vezes nas páginas 30 e 34.

POPPENDIECK, M.; POPPENDIECK, T. Lean software development: An agile toolkit.
Addison-Wesley, 2003. Citado na página 20.

POPPENDIECK, M.; POPPENDIECK, T. Implementing lean software development:
From concept to cash. [S.l.]: Pearson Education, 2007. Citado na página 18.

RAJPAL, M. Effective distributed pair programming. In: Proceedings of the
13th International Conference on Global Software Engineering. New York, NY,
USA: Association for Computing Machinery, 2018. (ICGSE ’18), p. 6–10. ISBN
9781450357173. Disponível em: <https://doi.org/10.1145/3196369.3196388>. Citado
3 vezes nas páginas 20, 38 e 49.

https://doi.org/10.1007/978-3-642-12442-6_17
https://doi.org/10.1145/3196369.3196388


Referências 76

RALPH, P.; SHPORTUN, P. Scrum abandonment in distributed teams: A revelatory
case. In: Proceedings - Pacific Asia Conference on Information Systems, PACIS 2013.
Jeju Island, Korea: AIS, 2013. v. 101, p. 1–16. ISBN 9788995217016. Citado 7 vezes
nas páginas 36, 38, 39, 40, 43, 46 e 50.

RAMESH, B. et al. Can distributed software development be agile? Commun. ACM,
Association for Computing Machinery, New York, NY, USA, v. 49, n. 10, p. 41–46, out.
2006. ISSN 0001-0782. Disponível em: <https://doi.org/10.1145/1164394.1164418>.
Citado 7 vezes nas páginas 19, 37, 40, 41, 42, 49 e 67.

RAMESH, B.; MOHAN, K.; CAO, L. Ambidexterity in agile distributed development:
An empirical investigation. Info. Sys. Research, INFORMS, Linthicum, MD,
USA, v. 23, n. 2, p. 323–339, jun. 2012. ISSN 1526-5536. Disponível em:
<https://doi.org/10.1287/isre.1110.0351>. Citado 2 vezes nas páginas 39 e 49.

Razavi, A. M.; Ahmad, R. Agile development in large and distributed environments:
A systematic literature review on organizational, managerial and cultural aspects. In:
2014 8th. Malaysian Software Engineering Conference (MySEC). Langkawi, Malaysia:
IEEE, 2014. p. 216–221. Citado 4 vezes nas páginas 23, 37, 57 e 68.

RAZZAK, M. A. Transition from plan-driven to agile: An action research. In: SPRINGER.
International Conference on Product-Focused Software ProcWohlin2012ess
Improvement. [S.l.], 2016. p. 746–750. Citado na página 15.

RAZZAK, M. A. Transition from plan-driven to agile: An action research. In:
ABRAHAMSSON, P. et al. (Ed.). Product-Focused Software Process Improvement.
Cham: Springer International Publishing, 2016. p. 746–750. Citado na página 42.

RAZZAK, M. A. et al. Transition from plan driven to safe®: Periodic team self-
assessment. In: FELDERER, M. et al. (Ed.). Product-Focused Software Process
Improvement. Cham: Springer International Publishing, 2017. p. 573–585. ISBN
978-3-319-69926-4. Citado 10 vezes nas páginas 19, 23, 36, 37, 41, 42, 48, 55, 56
e 65.

RAZZAK, M. A. et al. Scaling agile across the global organization: An early stage
industrial safe self-assessment. In: Proceedings of the 13th International Conference
on Global Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2018. (ICGSE ’18), p. 121–130. ISBN 9781450357173. Disponível em:
<https://doi.org/10.1145/3196369.3196373>. Citado 7 vezes nas páginas 20, 36, 37,
55, 56, 57 e 65.

RICHTER, I.; RAITH, F.; WEBER, M. Problems in agile global software engineering
projects especially within traditionally organised corporations: [an exploratory semi-
structured interview study]. In: Proceedings of the Ninth International C* Conference
on Computer Science & Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2016. (C3S2E ’16), p. 33–43. ISBN 9781450340755.
Disponível em: <https://doi.org/10.1145/2948992.2949019>. Citado 6 vezes nas
páginas 37, 40, 43, 44, 45 e 67.

RIZVI, B.; BAGHERI, E.; GASEVIC, D. A systematic review of distributed agile
software engineering. Journal of Software: Evolution and Process, v. 27, 06 2015.
Citado 19 vezes nas páginas 19, 22, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52 e 55.

https://doi.org/10.1145/1164394.1164418
https://doi.org/10.1287/isre.1110.0351
https://doi.org/10.1145/3196369.3196373
https://doi.org/10.1145/2948992.2949019


Referências 77

Robinson, P. T. Communication network in an agile distributed software development
team. In: 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE). Montreal, QC, Canada, Canada: IEEE, 2019. p. 100–104.
Citado 3 vezes nas páginas 36, 37 e 39.

S., R. M.; KUMAR, R.; MANI, V. S. Transitioning from plan-driven to lean in a
global software engineering organization: A practice-centric view. In: Proceedings
of the 13th International Conference on Global Software Engineering. New York,
NY, USA: Association for Computing Machinery, 2018. (ICGSE ’18), p. 1–5. ISBN
9781450357173. Disponível em: <https://doi.org/10.1145/3196369.3196395>. Citado
12 vezes nas páginas 36, 38, 39, 40, 41, 44, 55, 56, 57, 58, 59 e 65.

SCHENK, J.; PRECHELT, L.; SALINGER, S. Distributed-pair programming can work
well and is not just distributed pair-programming. In: Companion Proceedings of
the 36th International Conference on Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2014. (ICSE Companion 2014), p. 74–83. ISBN
9781450327688. Disponível em: <https://doi.org/10.1145/2591062.2591188>. Citado
na página 41.

SCHWABER, K.; BEEDLE, M. Agile Software Development with Scrum. 1st. ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001. ISBN 0130676349. Citado 2 vezes
nas páginas 18 e 20.

Schwaber, Ken. UnSAFe at any speed. 2013. <https://kenschwaber.wordpress.com/
2013/08/06/unsafe-at-any-speed/>. Online; accessed 15-June-2020. Citado 2 vezes
nas páginas 16 e 63.

SIEVI-KORTE, O.; RICHARDSON, I.; BEECHAM, S. Software architecture design in
global software development: An empirical study. Journal of Systems and Software,
v. 158, p. 110400, 08 2019. Citado na página 67.

Sriram, R.; Mathew, S. K. Global software development using agile methodologies:
A review of literature. In: 2012 IEEE International Conference on Management of
Innovation Technology (ICMIT). Sanur Bali, Indonesia: IEEE, 2012. p. 389–393.
Citado 5 vezes nas páginas 18, 36, 39, 42 e 43.

Sundararajan, S.; Bhasi, M.; Vijayaraghavan, P. K. Case study on risk management
practice in large offshore-outsourced agile software projects. IET Software, v. 8, n. 6,
p. 245–257, 2014. Citado 15 vezes nas páginas 36, 37, 38, 39, 41, 42, 43, 44, 45, 47,
48, 50, 52, 53 e 64.

Sutherland, Jeff and Brown, Alex. Scrum@Sacale. 2020. <https://www.scrumatscale.
com/scrum-at-scale-guide/>. [Online; accessed 16-July-2020]. Citado na página 15.

Szabó, D. M.; Steghöfer, J. Coping strategies for temporal, geographical and
sociocultural distances in agile gsd: A case study. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). Montreal, QC, Canada, Canada: IEE, 2019. p. 161–170. Citado 13
vezes nas páginas 20, 36, 37, 38, 39, 40, 41, 42, 43, 51, 53, 55 e 67.

TANNER, M.; CHIGONA, W. Towards an understanding of the contextual influences
on distributed agile software development: A theory of practice perspective. ECIS

https://doi.org/10.1145/3196369.3196395
https://doi.org/10.1145/2591062.2591188
https://kenschwaber.wordpress.com/2013/08/06/unsafe-at-any-speed/
https://kenschwaber.wordpress.com/2013/08/06/unsafe-at-any-speed/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://www.scrumatscale.com/scrum-at-scale-guide/


Referências 78

2012 - Proceedings of the 20th European Conference on Information Systems, v. 178,
01 2012. Citado 6 vezes nas páginas 37, 41, 42, 43, 49 e 53.

TRIPATHI, N. et al. Scaling kanban for software development in a multisite organization:
Challenges and potential solutions. In: LASSENIUS, C.; DINGSØYR, T.; PAASIVAARA,
M. (Ed.). Agile Processes in Software Engineering and Extreme Programming. Cham:
Springer International Publishing, 2015. p. 178–190. Citado 13 vezes nas páginas 37,
39, 41, 42, 45, 46, 47, 51, 55, 56, 57, 64 e 65.

VALLON, R. et al. Identifying critical areas for improvement in agile multi-site
co-development. ENASE 2013 - Proceedings of the 8th International Conference on
Evaluation of Novel Approaches to Software Engineering, v. 1, p. 165–172, 01 2013.
Citado 9 vezes nas páginas 36, 37, 38, 40, 41, 42, 43, 45 e 50.

VALLON, R. et al. Systematic literature review on agile practices in global software
development. Information and Software Technology, v. 96, 12 2017. Citado 20 vezes
nas páginas 15, 16, 19, 20, 21, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51
e 53.

VersionOne, Inc. 14th Annual State of Agile Development Survey. 2020. <https:
//stateofagile.com/#ufh-c-7027494-state-of-agile>. [Online; accessed 28-May-2020].
Citado 3 vezes nas páginas 15, 16 e 64.

WAHYUDIN, D. et al. In-time role-specific notification as formal means to balance agile
practices in global software development settings. In: MEYER, B.; NAWROCKI, J. R.;
WALTER, B. (Ed.). Balancing Agility and Formalism in Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. p. 208–222. ISBN 978-3-540-85279-7.
Citado na página 18.

WIERINGA, R. et al. Requirements engineering paper classification and evaluation
criteria: A proposal and a discussion. Requir. Eng., v. 11, p. 102–107, 03 2006. Citado
2 vezes nas páginas 30 e 33.

WOHLIN, C. et al. Experimentation in software engineering. In: . [S.l.]: Springer,
2012. p. 123–151. ISBN 978-3-642-29043-5. Citado 2 vezes nas páginas 67 e 68.

ZAMBONI, A. B. et al. Start uma ferramenta computacional de apoio à revisão
sistemática. 2010. Citado na página 27.

https://stateofagile.com/#ufh-c-7027494-state-of-agile
https://stateofagile.com/#ufh-c-7027494-state-of-agile

	5f38a95b30e6776ecceb2bc8520d3d1b168099498df9af9a92edc2fa5dd4606d.pdf
	Scaling agile methods in global software projects: Is it possible with SAFe?
	Folha de rosto

	990d854c2ea4fd3d59e1426d7ffb55f4af389aab1d0a01e85d38686509857256.pdf

	dd0577ad52d1ef468eec205d57589f139e817f366d4fdeb6f7cdcfc14078e760.pdf
	Microsoft Word - Rafael Camara.doc

	5f38a95b30e6776ecceb2bc8520d3d1b168099498df9af9a92edc2fa5dd4606d.pdf
	Scaling agile methods in global software projects: Is it possible with SAFe?
	Dedicatória
	Acknowledgments
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introduction
	Goals
	General Goal
	Specifics Goals

	Document Structure

	Background
	Agile Software Development - ASD
	Global software development (GSD)
	Agile Global software development (AGSD)
	Scaled Agile Framework®
	Related Work
	Chapter Conclusion

	Methodology
	Systematic Literature Review
	Document selection
	Inclusion/Exclusion criteria

	Study Quality
	Data Extraction

	Mapping
	Chapter conclusion

	Research Development
	Overview of the primary studies
	RQ: How are agile practices adopted in agile global software development teams?
	Daily meeting (36)
	Communication practices (34)
	Planning (24)
	Scrum of scrums - SoS (20)
	Visits among sites (20)
	Retrospective meeting (19)
	Sprint (19)
	Product backlog (18)
	Backlog management (16)
	User stories (15)
	Pair programming (15)
	Sprint review (14)
	Self-management (13)
	Continuous integration (11)
	Burndown charts (11)
	Synchronize work hours (10)
	Coaching (9)
	Task management (9)
	Necessary documentation (9)
	Kanban board (8)
	Design the team (8)
	Co-locate all team members at the beginning (8)
	Test driven development - TDD (7)
	Project wiki (7)
	Estimation meeting (6)
	Continuous deployment (6)
	System demo (6)
	Test automation (6)
	Code review (6)
	Collaboration among teams (6)
	Manage customer expectations (6)
	Planning game (6)
	Continuous delivery (6)
	Assign a role to each project member (5)
	Agile architecture (5)
	Coding standards (5)
	Collective code ownership (5)
	Refactoring (5)
	Frequent feedbacks (4)
	Bug tracking (4)
	Documentation of lessons learned (4)
	Share mission and vision (3)
	Rotate team members among sites (3)
	Simple design (3)
	Roadmap Planning (3)
	Acceptance tests (3)
	Tests management (2)
	Expand teams responsibility gradually (2)

	Discussion and Conclusion of agile practices in AGSD
	Which practices reported in AGSD literature embrace practices from SAFe when adopting scale agile development?
	Communication practices
	Scrum of Scrums
	Visits among sites
	Kanban board
	Task management
	Agile coaching
	Document necessary information
	Synchronize work hours
	Project wiki
	System demo
	Assign a role to each project member
	Collaboration among teams
	Agile architecture
	Coding standards
	Share mission and vision
	Simple design
	Roadmap planning
	Expand teams responsibility gradually

	Discussion and conclusion of scaling agile practices in AGSD
	Chapter conclusion

	Final consideration
	Limitations and threats to validity
	Future work

	Referências



