8 "C DE Cereus jamacaru P.DC., SUBMETIDO A TRÊS REGIMES HÍDRICOS

E. V. S. B. SAMPAIO

Pesquisador do Dep. de Energia Nuclear da Universidade Federal de Pernambuco (UFPE).

T. C. A. PEREIRA

Prof. Adjunto do Dep. de Biologia da UFRPE.

E. MATSUL

Pesquisador da Divisão de Ciências Ambientals do Centro de Energia Nuclear na Agricultura (CENA) — Piracicaba, SP.

Os valores δ ¹³ C de plantas de *Cereus jamacaru* P. DC., cultivadas a partir de sementes, em casa-de-vegetação, durante um ano e submetidas a 3 regimes hídricos (solo levado a capacidade de campo a cada dois, cinco e dez dias) foram determinados por espectrometria de massa. O δ 13 C foi — 12,8, sem diferenças entre tratamentos. Os diferentes regimes hídricos não alteraram a fixação inicial do CO $_{\circ}$, via PEP carboxilase, apesar das diferenças causadas no crescimento das plantas.

INTRODUÇÃO

O δ 12 C de plantas C3 varia de -25 a $-32^{\circ}/_{\circ 0}$, o de plantas C4 de -10 a $-15^{\circ}/_{\circ 0}$ e o de plantas CAM de -10 a $-32^{\circ}/_{\circ 0}$ (SAM-PAIO, 1978 e BENDER, 1971). Estes valores dependem da reação inicial de carboxilação: a reação mediada pela Ribulose-disfosfato carboxilase (RUDP — case), típicas das C3, resulta em δ 12 C de cerca de $-28^{\circ}/_{\circ 0}$ (CHRISTELLER et alii, 1976), enquanto a mediada pela Fosfoenolpiruvato carboxilase (PEP — case), típica das C4, resulta em δ 13 C de cerca de $-11^{\circ}/_{\circ 0}$ (REIBACH & BENE-

DICT, 1977). As plantas CAM fixariam CO2 via PEP — case e/ou RuDP - case, dependendo das condições ambientais, o que explicaria a sua ampla faixa de valores 8 13 C. Essa mudança de processo fatossintético em plantas CAM tem sido demonstrada em laboratório com diversas plantas (BENDER et alii, 1973; LERMAN & QUEIROZ, 1974; MATHUR & VINES, 1978; OSMOND et alii, 1973; TROUGHTON & CARD, 1975 e LERMAN et alii, 1974). No campo, os resultados são incertos: alguns autores encontravam valores de 8 13 C mais baixos em condições menos áridas (OSMOND et alii, 1973; OSMOND et alii, 1975 e TROU-GHTON et alii, 1974) enquanto outros não encontraram diferenças significativas na discriminação ao ¹³ C em plantas submetidas a diferentes temperaturas e regimes hídricos (MOONEY et alii, 1974, e SZAREK & TROUGHTON, 1976). Pesquisa recente dos autores com plantas CAM desenvolvidas em locais de Pernambuco sujeitos a diferentes regimes hídricos não mostrou nenhuma variação nos valores de 8 13 C (SAMPAIO & MATSUI, 1979). Para confirmar esse resultado foi montado um experimento em casa-de-vegetação, com Cereus jamacaru P.DC., submetido a diferentes regimes hídricos.

MATERIAL E MÉTODO

Sementes de *Cereus jamacaru* P.DC., produzidos em Reife-PE, foram plantadas em areia lavada, em bandejas mantidas em casa-de-vegetação e as plântulas cultivadas por três meses após o qual foram transplantadas para potes contendo 435 g de uma mistura de areia, barro e esterco de galinha (1:1:1 em volume). As plantas foram, então, submetidas a três tratamentos, com estresse hídrico crescente: o solo era levado a capacidade de campo com intervalos de dois dias (T₁), cinco dias (T₂) e dez dias (T₃). Os tratamentos foram repetidos 20 vezes, com uma planta por repetição. As plantas foram cultivadas durante um ano sendo, então, colhidas, secas, pesadas, moídas e enviadas ao Centro de Energia Nuclear na Agricultura (CENA), Piracicaba — SP, para determinação do 8 °C, fazendo-se a combustão do material sobre óxido de cobre, recolhendo-se o CO₂ em O₂ líquido, destilando-se em álcool e gelo seco e analisando-se em espectrometro de massa.

x 1000, o padrão estabelecido através do calcário Pee Dee Be-

lemnite. Os dados foram analisados estatisticamente segundo delineamento inteiramente casualizado.

DISCUSSÃO E CONCLUSÕES

Não houve diferenças significativas entre os valores de 8 ¹² C dos tratamentos (tabela 1). Esse resultado confirma o já encontrado pelos autores com plantas no campo (SAMPAIO & MATSUI, 1979).

As condições experimentais não permitiram uma caracterização precisa dos regimes hídricos dos tratamentos, entretanto as diferenças em crescimento (figura 1) e produção de matéria seca (tabela 1) indicam que houve variação significativa no estresse hídrico. Como no tratamento que recebia água cada dois dias, a umidade do solo nunca foi inferior a 60% daquela retida à capacidade de campo, pode-se supor que nele a água não foi limitante e que as plantas fixaram CO₂ via PEP — case porque apenas o regime hídrico favorável não é suficiente para induzir mudança no processo fotossintético.

Tem sido sugerido que essa mudança estaria ligada ao fotoperiodísmo, sendo induzida por dias longos (BENDER et alii, 1973; OSMOND et alii, 1973; MATHUR & VINES, 1978 e LERMAN & QUEIROZ, 1974). Em condições naturais no Nordeste brasileiro os comprimentos dos dias têm pequena variação durante o ano e a mudança provavelmente não seria observada. É possível, também, que nem toda planta CAM tenha a capacidade de fixar CO₂ como uma C₃, já que a maioria das pesquisas que demonstraram essa mudança foi com plantas da família Crassulaceae (BENDER et alii, 1973; OSMOND et alii, 1973; MATHUR & VINES, 1978 e LERMAN & QUEIROZ, 1974).

Teoricamente, em condições hídricas favoráveis, a fixação pelo processo C₃ permitiria taxas fotossintéticas mais altas que a fixação pelo processo CAM. Entretanto, os resultados desta pesquisa e da anterior (SAMPAIO & MATSUI, 1979) permitem concluir que no Nordeste brasileiro Cereus jamacaru P.DC.; e muito provavelmente Nopalea cochenillifera Salm — Dick e Opuntia ficus-índica Mill, fixam CO₂ pelo processo CAM, mesmo quando se desenvolvem em condições hídricas favoráveis.

Tabela 1 — Peso seco e 8 ¹³ C de Cereus jamacaru P. DC. cultivados em casade-vegetação durante um ano e irrigados a cada dois dias (T₃), cinco dias (T₂) e dez dias (T₃)

Tratamento	Peso seco	8 13 C
**************************************	, : g	%。
Т,	24,5 a*	—12.8 a*
т,	20,4 b	—12,9 a
J ₈	13,2 c	12,8 а

^{*} Médias seguidas pela mesma letra na mesma coluna, não diferem estatisticamente pelo teste de Tukey ao nível de 1% de probabilidade.

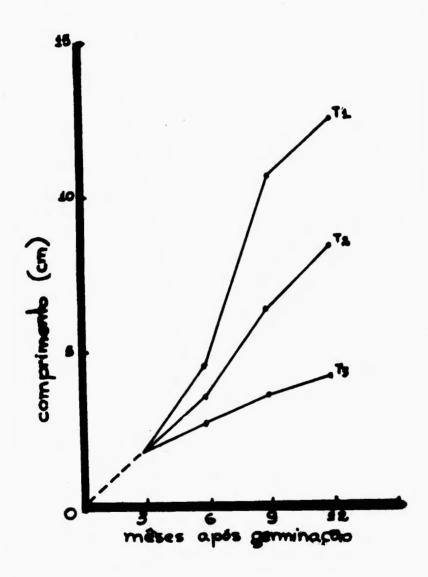


Figura 1 — Crescimento de cactos sujeito a três regimes hídricos: solo levado à capacidade de campo a cada dois dias (T₁), cinco dias (T₂) e dez dias (T₃)

ABSTRACT

Cereus jamacaru P. DC. plants were grown from seeds, in a greenhouse, during one year, under 3 water regimes (soil taken to field capacity each two, five and ten days) and their \mathcal{E}^{13} C determined by mass spectrometry. The \mathcal{E}^{13} C was — 12,83 with no difference among treatments. The different water regimes did not change the initial CO_2 fixation, by PEP carboxylase, in spite of the differences caused in plant growth.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1 → BENDER, M. M. Variations in the ³⁸ C/³² C rations of plants in relation to the pathway of photosynthetic carbon dioxide fixation. *Phytochemistry*, New York, 10:1239-44, 1971.
- 2 ; ROUHANT, I.; VINES, H. M.; BLACK JR., C. C. ¹³ C/¹² C ratio changes in Crassulacean Acid Metabolism plants. *Plant Physiology*, Bethesda, 52(5):427-39, Nov. 1973.
- 3 CHRISTELLER, J. T.; LAING, W. A.; TROUGHTON, J. H. Isotope discrimination by Ribulose 1,5-diphosphate carboxylase; no effect of temperature or HCO₃ concentration. *Plant Physiology*, Bethesda, 57(4): 580-2, Apr. 1976.
- 4 LERMAN, J. C. & QUEIROZ, O. Carbon fixation and isotope discrimination by a Crassulacean plant; dependence on the photoperiod. Science, Washington, 183:1207-9, Mar. 1974.
- 5 —; DELLEENS, E.; NATO, A.; MOYSE, A. Variation in the carbon isotope composition of a plant with Crassulacean Acid Metabolism. *Plant Physiology*, Bethesda, 53(4):581-4, Apr. 1974.
- 6 MATHUR, D.D. & VINES, H. M. Environmental effects on 8 ¹³ C shift in the leaves of Sedum rubrotinctum. Communication in Soil Science and Plant Analysis, New York, 9(9):843-50, 1978.
- 7 MOONEY, H.; TROGHTON, J. H.; BERRY, J. A. Arid climates and photosynthetic systems. Carnegie Institute of Washington Yearbook, 73: 793-805, 1974.
- 8 OSMOND, C. B.; ZIEGLER, H.; STICHLER, W.; TRIMBORN, P. Carbon isotope discriminationin in alpine succulant plants supposed to be capable of Crassulacean Acid Metabolism (CAM). Oecologia, Berlin, 18:209-17, 1975.
- 9 ; ALLAWAY, W. G.; SUTON, B. G.; TROUGHTON, J. H.; QUEIROZ, O.; LUTTGE, V.; WINTER, K. Carbon isotope discrimination in photosynthesis of CAM plants. *Nature*, London, 246:41-2, 1973.

- 10 REIBACH, P. H. & BENEDICT, C. R. Fractionation of stable carbon isotope by phosphoenolpyruvate carboxylast form C₄ plants. Plant Physiology, Bethesda, 59(4):564-8, Apr. 1977.
- 11 SAMPAIO, E. V. S. B. ¹² C/ ¹² C em plantas. Caderno Ômega da Universidade Federal Rural de Pernambuco, Recife, 2(1):19-38, jul. 1978.
- 12 — & MATSUI, E. 8 ¹³ C de plantas CAM de diferentes locais de Pernambuco. Anais da Universidade Federal Rural de Pernambuco, Recife, 4: 7-12, 1979.
- 13 SZAREK, S. R. & TROUGHTON, J. H. Carbon isotope ratios in Crassulacean Acid. Metabolism plants; seasonal patterns from plants in natural stands. *Plant Physiology*, *Bethesda* 58(3):367-70, Sep. 1976.
- 14 TROUGHTON, J. H. & CARD, K. A. Temperature effects on the carbon-isotope ratio of C₃, C₄ and Crassulacean-Acid-Metabolism (CAM) plants. *Planta*, *Berlin*, 123:185-90, 1975.
- 15 WELLS, P. V.; MOONEY, H. A. Photosynthetic mechanisms and paleocology from carbon isotope ratios in ancient specimens of C₄ and CAM plants. Science, Washington, 185(4151): 610-2, Aug. 1974.

Recebido para publicação em 03.05.1985